@article{TIMM_2023_29_2_a13,
author = {P. G. Surkov},
title = {An adaptive algorithm for a stable online identification of a disturbance in a fractional-order system on an infinite time horizon},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {172--188},
year = {2023},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a13/}
}
TY - JOUR AU - P. G. Surkov TI - An adaptive algorithm for a stable online identification of a disturbance in a fractional-order system on an infinite time horizon JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 172 EP - 188 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a13/ LA - ru ID - TIMM_2023_29_2_a13 ER -
%0 Journal Article %A P. G. Surkov %T An adaptive algorithm for a stable online identification of a disturbance in a fractional-order system on an infinite time horizon %J Trudy Instituta matematiki i mehaniki %D 2023 %P 172-188 %V 29 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a13/ %G ru %F TIMM_2023_29_2_a13
P. G. Surkov. An adaptive algorithm for a stable online identification of a disturbance in a fractional-order system on an infinite time horizon. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 172-188. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a13/
[1] Bar-Shalom Y., Li X.R., Kirubarajan T., Estimation with applications to tracking and navigation: Theory algorithms and software, John Wiley Sons, NY, 2004, 592 pp.
[2] Keesman K.J., System identification. An introduction, Springer-Verlag, London, 2011, 323 pp. | MR | Zbl
[3] Norton J.P., An Introduction to identification, Dover Publ. Inc., NY, 2009, 310 pp. | MR | Zbl
[4] Pandolfi L., Systems with persistent memory: Controllability, stability, identification, Springer, Cham, 2021, 356 pp. | MR | Zbl
[5] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 285 pp. | MR
[6] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, URSS, M., 2022, 288 pp.
[7] Butera S., Di Paola M., “A physically based connection between fractional calculus and fractal geometry”, Annals. of Physics, 350 (2014), 146–158 | DOI | MR | Zbl
[8] Podlubny I., “Geometrical and physical interpretation of fractional integration and fractional differentiation”, Fractional Calculus and Applied Analysis, 5:4 (2002), 367–386 | MR | Zbl
[9] Stanislavskii A.A., “Veroyatnostnaya interpretatsiya integrala drobnogo poryadka”, Teoret. i mat. fizika, 138:3 (2004), 491–507 | DOI | MR | Zbl
[10] Tarasov V.E., “Geometric interpretation of fractional-order derivative”, Fractional Calculus and Applied Analysis, 19:5 (2016), 1200–1221 | DOI | MR | Zbl
[11] Gomoyunov M.I., “Differential games for fractional-order systems: Hamilton–Jacobi–Bellman–Isaacs equation and optimal feedback strategies”, Mathematics, 9:14 (2021), 1667 | DOI
[12] Matychyn I., Onyshchenko V., “Time-optimal control of linear fractional systems with variable coefficients”, Internat. J. Appl. Math. Comp. Sci., 31:3 (2021), 375–386 | DOI | MR | Zbl
[13] Boumenir A., Kim Tuan V., Al-Khulaifi W., “Reconstructing a fractional integro-differential equation”, Math. Methods Appl. Sci., 44:4 (2021), 3159–3166 | DOI | MR | Zbl
[14] Samko S.G. Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.
[15] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier Science, NY, 2006, 540 pp. | MR | Zbl
[16] Vasin V.V., Osnovy teorii nekorrektnykh zadach, Izd-vo SO RAN, Novosibirsk, 2020, 313 pp.
[17] Kabanikhin S.I., Inverse and Ill-posed problems: Theory and application, De Gruyter, Berlin, 2012, 459 pp. | MR
[18] Kryazhimskii A.V., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhnicheskaya kibernetika, 1983, no. 2, 51–60 | Zbl
[19] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[20] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo IMM UrO RAN, Ekaterinburg, 2011, 292 pp.
[21] Maksimov V.I., Osipov Yu.S., “O granichnom upravlenii raspredelennoi sistemoi na beskonechnom promezhutke vremeni”, Zhurn. vychisl. matematiki i mat. fiziki, 56:1 (2016), 16–28 | DOI | Zbl
[22] Blizorukova M.S., Maksimov V.I., “O rekonstruktsii vkhodnogo vozdeistviya parabolicheskogo uravneniya na beskonechnom promezhutke vremeni”, Izv. vuzov. Matematika, 2014, no. 8, 30–41 | Zbl
[23] Blizorukova M.S., Maksimov V.I., “Ob odnom algoritme dinamicheskogo vosstanovleniya vkhodnogo vozdeistviya”, Differents. uravneniya, 49:1 (2013), 88–100 | DOI | MR | Zbl
[24] Rozenberg V.L., “Dinamicheskaya rekonstruktsiya vozmuschenii v kvazilineinom stokhasticheskom differentsialnom uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 58:7 (2018), 1121–1131 | DOI
[25] Maksimov V.I., “O rekonstruktsii upravlenii v eksponentsialno ustoichivykh lineinykh sistemakh, podverzhennykh malym vozmuscheniyam”, Prikl. matematika i mekhanika, 71:6 (2007), 945–955 | MR | Zbl
[26] Maksimov V.I., “The methods of dynamical reconstruction of an input in a system of ordinary differential equations”, J. Inverse and Ill-posed Problems, 29:1 (2021), 125–156 | DOI | MR | Zbl
[27] Surkov P.G., “Zadacha dinamicheskogo vosstanovleniya pravoi chasti sistemy differentsialnykh uravnenii netselogo poryadka”, Differents. uravneniya, 55:6 (2019), 865–874 | DOI | Zbl
[28] Surkov P.G., “Real-time reconstruction of external impact on fractional order system under measuring a part of coordinates”, J. Comp. Appl. Math., 381:3 (2021), 113039 | DOI | MR | Zbl
[29] Surkov P.G., “Approximate calculation of the Caputo-type fractional derivative from inaccurate data. Dynamical approach”, Fractional Calculus and Applied Analysis, 24:3 (2021), 895–922 | DOI | MR | Zbl
[30] Fagnani F., Maksimov V., Pandolfi L., “A recursive deconvolution approach to disturbance reduction”, IEEE Transactions on Automatic Control, 49:6 (2004), 907–921 | DOI | MR | Zbl
[31] Subbotina N.N., Krupennikov E.A., “Slaboe so zvezdoi reshenie zadachi dinamicheskoi rekonstruktsii”, Tr. MIAN, 315 (2021), 247–260 | DOI | Zbl
[32] Barbashin E.A., Vvedenie v teoriyu ustoichivosti, URSS, M., 2022, 230 pp.
[33] Matignon D., “Stability results for fractional differential equations with applications to control processing”, Computational engineering in systems applications, 2:1 (1996), 963–968
[34] Gomoyunov M.I., “Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems”, Fractional Calculus and Applied Analysis, 21:5 (2018), 1238–1261 | DOI | MR | Zbl