On Essential Values of Oscillation Exponents for Solutions of a Linear Homogeneous Two-Dimensional Differential System
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 157-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we study various types of oscillation exponents for solutions of linear homogeneous differential systems with continuous bounded coefficients. The calculation of the oscillation exponents is carried out by averaging the number of zeros (signs, roots, or hyperroots) of the projection of a solution $x$ of a differential system onto any straight line, and this line is chosen so that the resulting average value is minimal: if the minimization is performed before (after) the averaging, then weak (strong, respectively) oscillation exponents are obtained. In the calculation of the oscillation exponents for a solution $y$ of a linear homogeneous $n$th-order differential equation, a transition to the vector function $x=(y, \dot y,\dots, y^{(n-1)})$ is carried out. In the first part of the paper, for any preassigned positive integer $N$, a two-dimensional periodic linear differential system is constructed, which has the property that its spectra of all upper and lower strong and weak oscillation exponents of strict and nonstrict signs, zeros, roots, and hyperroots contain the same set consisting of $N$ different essential values, both metrically and topologically. Moreover, all these values are implemented on the same set of solutions of the constructed system; that is, for each solution from this set, all the oscillation exponents coincide with each other. In the second part of the paper, a similar theorem on the existence of a two-dimensional differential system with a countable set of essential (both metrically and topologically) values of oscillation exponents is proved. In constructing the mentioned systems and proving the required results, we use analytical methods of the qualitative theory of differential equations and methods of the theory of perturbations of solutions of linear differential systems, in particular, the author's technique for controlling the fundamental matrix of solutions of such systems in one special case.
Keywords: differential equation, linear system, the number of zeros, oscillation exponents, Sergeev's frequency.
Mots-clés : oscillation
@article{TIMM_2023_29_2_a12,
     author = {A. Kh. Stash},
     title = {On {Essential} {Values} of {Oscillation} {Exponents} for {Solutions} of a {Linear} {Homogeneous} {Two-Dimensional} {Differential} {System}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {157--171},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a12/}
}
TY  - JOUR
AU  - A. Kh. Stash
TI  - On Essential Values of Oscillation Exponents for Solutions of a Linear Homogeneous Two-Dimensional Differential System
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 157
EP  - 171
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a12/
LA  - ru
ID  - TIMM_2023_29_2_a12
ER  - 
%0 Journal Article
%A A. Kh. Stash
%T On Essential Values of Oscillation Exponents for Solutions of a Linear Homogeneous Two-Dimensional Differential System
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 157-171
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a12/
%G ru
%F TIMM_2023_29_2_a12
A. Kh. Stash. On Essential Values of Oscillation Exponents for Solutions of a Linear Homogeneous Two-Dimensional Differential System. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 157-171. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a12/

[1] Sergeev I.N., “Opredelenie i svoistva kharakteristicheskikh chastot lineinogo uravneniya”, Trudy seminara im. I. G. Petrovskogo, 2006, no. 25, 249–294 | Zbl

[2] Sergeev I.N., “Kharakteristiki koleblemosti i bluzhdaemosti reshenii lineinoi differentsialnoi sistemy”, Izv. RAN. Seriya matematicheskaya, 76:1 (2012), 149–172 | DOI | MR | Zbl

[3] Sergeev I.N., “Zamechatelnoe sovpadenie kharakteristik koleblemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Mat. sb., 204:1 (2013), 119–138 | DOI | MR | Zbl

[4] Sergeev I.N., “Polnyi nabor sootnoshenii mezhdu pokazatelyami koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Izv. In-ta matematiki i informatiki UdGU, 2015, no. 2 (46), 171–183 | Zbl

[5] Sergeev I.N., “Lyapunovskie kharakteristiki koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Trudy seminara im. I. G. Petrovskogo, 2016, no. 31, 177–219

[6] Sergeev I.N., “Pokazateli koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Mat. zametki, 99:5 (2016), 732–751 | DOI | MR | Zbl

[7] Barabanov E.A., Voidelevich A.S., “K teorii chastot Sergeeva nulei, znakov i kornei reshenii lineinykh differentsialnykh uravnenii. I”, Differents. uravneniya, 52:10 (2016), 1302–1320 | DOI | Zbl

[8] Barabanov E.A., Voidelevich A.S., “K teorii chastot Sergeeva nulei, znakov i kornei reshenii lineinykh differentsialnykh uravnenii. II”, Differents. uravneniya, 52:12 (2016), 1595–1609 | DOI | Zbl

[9] Bykov V.V., “O berovskoi klassifikatsii chastot Sergeeva nulei i kornei reshenii lineinykh differentsialnykh uravnenii”, Differents. uravneniya, 52:4 (2016), 419–425 | DOI | MR | Zbl

[10] Barabanov E.A., Voidelevich A.S., “Cpektry verkhnikh chastot Sergeeva nulei i znakov lineinykh differentsialnykh uravnenii”, Dokl. NAN Belarusi, 60:1 (2016), 24–31 | MR | Zbl

[11] Voidelevich A.S., “O spektrakh verkhnikh chastot Sergeeva lineinykh differentsialnykh uravnenii”, Zhurn. Belorus. gos. un-ta. Matematika. Informatika, 2019, no. 1, 28–32 | DOI | MR | Zbl

[12] Sergeev I.N., “Metricheski tipichnye i suschestvennye znacheniya pokazatelei lineinykh sistem”, Differents. uravneniya, 47:11 (2011), 1661–1662

[13] Sergeev I.N., “Topologicheski tipichnye i suschestvennye znacheniya pokazatelei lineinykh sistem”, Differents. uravneniya, 48:11 (2012), 1567–1568

[14] Stash A.Kh., “Ob otsutstvii svoistva ostatochnosti u silnykh pokazatelei koleblemosti lineinykh sistem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 31:1 (2021), 59–69 | DOI | MR | Zbl

[15] Stash A.Kh., “Suschestvovanie dvumernoi lineinoi sistemy s kontinualnymi spektrami polnykh i vektornykh chastot”, Differents. uravneniya, 51:1 (2015), 143–144 | DOI | MR | Zbl

[16] Burlakov D.S., Tsoi S.V., “Sovpadenie polnoi i vektornoi chastot reshenii lineinoi avtonomnoi sistemy”, Trudy seminara im. I. G. Petrovskogo, 2014, no. 30, 75–93

[17] Stash A.Kh., “Svoistva pokazatelei koleblemosti reshenii lineinykh avtonomnykh differentsialnykh sistem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 29:4 (2019), 558–568 | DOI | MR | Zbl

[18] Stash A.Kh., “O konechnykh spektrakh polnoi i vektornoi chastot lineinoi dvumernoi differentsialnoi periodicheskoi sistemy”, Vestn. Adygeis. gos. un-ta. Ser. 4, 2014, no. 1 (133), 30–36

[19] Stash A.Kh., “O schetnykh spektrakh polnoi i vektornoi chastot lineinoi dvumernoi differentsialnoi sistemy”, Vestn. Adygeis. gos. un-ta. Ser. 4, 2014, no. 2 (137), 23–32

[20] Filippov A.F., Vvedenie v teoriyu differentsialnykh uravnenii, Editorial URSS, M., 2004, 240 pp.

[21] Shishlyannikov E.M., “Dvumernye differentsialnye sistemy s proizvolnymi konechnymi spektrami pokazatelya bluzhdaemosti”, Vestn. Mosk. un-ta Ser. 1. Matematika Mekhanika, 2017, no. 5, 14–21 | MR | Zbl