One approach to the solution of the wave equation for dielectric nonmagnetic media
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 145-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For dielectric nonmagnetic media, we consider a wave equation obtained from the system of Maxwell's equations in the framework of nonlinear optics with the classical approach. The equation describes the dynamics of the radiation field in glasses, liquids, gases, and many crystals. The dynamics of the electric field of radiation can be analyzed only with the knowledge of the polarization response of the medium to the force action of this field. Therefore, the wave equation can be considered underdetermined. It contains terms depending on the intensity $E=E(x,y,z,t)$ of the electric field of the radiation and a term depending on the polarization response of the medium $P=P(x,y,z,t)$. We propose a method for solving this underdetermined equation. Since the polarization response of the medium is caused by the force action of the electric field of radiation, we assume that the equation $P=P(E)$, $E(x,y,z,t)=\rm{const}$, defines a level surface of the function $P$. Under this assumption, the wave equation reduces to an ODE. The independent variable in the ODE is the function $E$. The function $E=E(x,y,z,t)$ is found by solving the first-order partial differential equation (the basic equation) $E_{t}=f_{0}(E)$. The solution of the ODE and the form of $E=E(x,y,z,t)$ (hence, the dynamics of the radiation field) depend on the choice of an arbitrary function $f_{0}(E)$. The form of $E=E(x,y,z,t)$ and $P=P(E)$ is written for four functions $f_{0}(E)$. These solutions are found up to an arbitrary constant.
Keywords: wave equation, polarization, ODE system, functional arbitrariness.
@article{TIMM_2023_29_2_a11,
     author = {L. I. Rubina},
     title = {One approach to the solution of the wave equation for dielectric nonmagnetic media},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {145--156},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a11/}
}
TY  - JOUR
AU  - L. I. Rubina
TI  - One approach to the solution of the wave equation for dielectric nonmagnetic media
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 145
EP  - 156
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a11/
LA  - ru
ID  - TIMM_2023_29_2_a11
ER  - 
%0 Journal Article
%A L. I. Rubina
%T One approach to the solution of the wave equation for dielectric nonmagnetic media
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 145-156
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a11/
%G ru
%F TIMM_2023_29_2_a11
L. I. Rubina. One approach to the solution of the wave equation for dielectric nonmagnetic media. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 145-156. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a11/

[1] Bahaa E. A. Saleh, Malvin Carl Teich., Fundamentals of Photonics, 1st ed., Wiley, 1991, 992 pp.; 2nd ed., Wiley, 2007, 1200 pp.; 3 rd. ed., Wiley, 2019, 1359 pp.

[2] Sazonov S.V., “Ob opticheskikh solitonakh razlichnykh dlitelnostei”, Uchenye zapiski Kazan. gos. un-ta. Fiz.-mat. nauki, 150, no. 2, 2008, 29–37

[3] Sazonov S.V., “K nelineinoi optike predelno korotkikh impulsov”, Optika i spektroskopiya, 130:12 (2022), 1846–1855 | DOI

[4] Agranat M.B., Anisimov S.I. , Makshantsev B.I., “Anomalnoe teplovoe izluchenie metallov, sozdavaemoe ultrakorotkimi lazernymi impulsami”, Prikl. fizika, fotofizika i lazernaya khimiya, 47:3 (1988), 209–221 | DOI

[5] Akhmanov S.A., Vorontsov M.A., Ivanov V. Yu., “Krupnomasshtabnye poperechnye nelineinye vzaimodeistviya v lazernykh puchkakh, novye tipy nelineinykh voln, vozniknovenie opticheskoi turbulentnosti”, Pisma v ZhETF, 47:12 (1988), 611–614

[6] Akaev A.A., Maiorov S.A., Opticheskie metody obrabotki informatsii, Vyssh. shk., M., 1988, 238 pp.

[7] Akimova I.G., Razgulin A.B., “Rotatsionnye volny v opticheskoi sisteme s difraktsiei i povorotom prostranstvennykh argumentov”, Vestn. Mosk. un-ta. Ser. 15: Vychisl. matematika i kibernetika, no. 2, 1999, 20–25 | Zbl

[8] Ryskin N.M., Trubetskov D.I., Nelineinye volny, Sovremennaya teoriya kolebanii i voln, Nauka. Fizmatlit, M., 2000, 272 pp.

[9] Ovsiannikov L.V., Group analysis of differential equations, Acad. Press, NY, 1982, 416 pp. | MR | Zbl

[10] Courant R., Hilbert D., Methods of mathematical physics, v. 2, Partial differential equations, Interscience, NY, 1962, 830 pp. | MR | Zbl

[11] Clarkson P.A., Kruskal M.D., “New similarity reductions of the Boussinesq equation”, J. Math. Phys., 30:10 (1989), 2201–2213 | DOI | MR | Zbl

[12] Sidorov A.F., Gavrilushkin I. B., “Ob odnom klasse reshenii nelineinogo uravneniya dlya potentsiala skorostei”, Prikl. matematika i mekhanika, 38:2 (1974), 264–270

[13] Sidorov A.F., “O nekotorykh predstavleniyakh reshenii kvazilineinykh giperbolicheskikh uravnenii”, Chislennye metody mekhaniki sploshnoi sredy, 6:4 (1975), 106–115, Novosibirsk | MR

[14] Sidorov A.F., “O nekotorykh klassakh reshenii uravnenii nestatsionarnoi filtratsii”, Chislennye metody mekhaniki sploshnoi sredy, 15:2 (1984), 121–133, Novosibirsk | MR | Zbl

[15] Sidorov A.F., “Analiticheskie predstavleniya reshenii nelineinykh parabolicheskikh uravnenii tipa nestatsionarnoi filtratsii”, Dokl. AN SSSR, 280:1 (1985), 47–51 | MR | Zbl

[16] Rubina L.I., Ulyanov O.N., “Reshenie nelineinykh uravnenii v chastnykh proizvodnykh geometricheskim metodom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 265–286

[17] Sidorov A.F., Shapeev V.P, Yanenko N.N., Metod differentsialnykh svyazei i ego prilozheniya k gazovoi dinamike, Nauka, Novovosibirsk, 1984, 272 pp. | MR

[18] Bruce M., Hua X., “An approximate link equation for the direct–detected optical PPM link”, IPN Progress Report. Nov., 2014, 42-199A, 14 pp. | MR

[19] Boroson D.M., Robinson B.S., Murphy D.V., Burianek D.A., Khatri F., Kovalik J. M., Sodnik Z., Cornwell D. M., “Overview and results of the lunar laser communication demonstration”, Proc. of the SPIE, 8971, 2014, 89710S, 11 pp. | DOI

[20] Losev D.V., Bardashov D.S., Bykov A.G., “Vozbuzhdenie poluprovodnikovogo dioda korotkim impulsom”, Izv. vuzov. Fizika, 58:8-2 (2015), 147–150

[21] Alimenkov I.V., Pchelkina Yu.Zh., “Integrirovanie v elementarnykh funktsiyakh dvunapravlennogo uravneniya rasprostraneniya impulsov v opticheskikh voloknakh dlya stepennoi nelineinosti”, Kompyuternaya optika, 38:3 (2014), 377–379

[22] Rubina L.I., Ulyanov O.N., “K voprosu ob otlichiyakh v povedenii reshenii lineinogo i nelineinogo uravnenii teploprovodnosti”, Vestn. YuUrGU. Ser. Matematika. Mekhanika. Fizika, 5:2 (2013), 52–59 | MR | Zbl

[23] Rubina L.I., Ulyanov O.N., “Ob odnom metode resheniya uravneniya nelineinoi teploprovodnosti”, Sib. mat. zhurn., 53:5 (2012), 1093–1101 | MR

[24] Rubina L.I., Ulyanov O.N., “Ob odnom podkhode k resheniyu neodnorodnykh uravnenii v chastnykh proizvodnykh”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 27:3 (2017), 355–364 | DOI | MR | Zbl