Richardson Method for a Diffusion Equation with Functional Delay
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 133-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A diffusion equation with a functional delay effect is considered. The problem is discretized. Constructions of the Crank–Nicolson difference method with piecewise linear interpolation and extrapolation by continuation are given; the method here has the second order of smallness with respect to the sampling steps in time $\Delta$ and space $h$. The basic Crank–Nicolson method with piecewise cubic interpolation and extrapolation by continuation is constructed. The order of the residual without interpolation of the basic method is studied, and the expansion coefficients of the residual with respect to $\Delta$ and $h$ are written. An equation for the leading term of the asymptotic expansion of the global error is written. Under certain assumptions, the validity of the application of the Richardson extrapolation procedure is substantiated and an appropriate method is constructed. The main of these assumptions is the consistency of the orders of smallness of $\Delta$ and $h$. It is proved that the method has order $O(\Delta^4+h^4)$. The results of numerical experiments on test examples are presented.
Mots-clés : diffusion equation
Keywords: functional delay, Crank–Nicolson method, piecewise cubic interpolation, extrapolation by continuation, Richardson method.
@article{TIMM_2023_29_2_a10,
     author = {V. G. Pimenov and A. B. Lozhnikov},
     title = {Richardson {Method} for a {Diffusion} {Equation} with {Functional} {Delay}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {133--144},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a10/}
}
TY  - JOUR
AU  - V. G. Pimenov
AU  - A. B. Lozhnikov
TI  - Richardson Method for a Diffusion Equation with Functional Delay
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 133
EP  - 144
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a10/
LA  - ru
ID  - TIMM_2023_29_2_a10
ER  - 
%0 Journal Article
%A V. G. Pimenov
%A A. B. Lozhnikov
%T Richardson Method for a Diffusion Equation with Functional Delay
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 133-144
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a10/
%G ru
%F TIMM_2023_29_2_a10
V. G. Pimenov; A. B. Lozhnikov. Richardson Method for a Diffusion Equation with Functional Delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 133-144. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a10/

[1] Wu J., Theory and application of partial functional differential equations, Springer-Verlag, NY, 1996, 438 pp. | MR

[2] Kamont Z., Kropelnitska K., “Neyavnye raznostnye metody dlya evolyutsionnykh funktsionalno-differentsialnykh uravnenii”, Sib. zhurn. vychislit. matematiki, 14:4 (2011), 361–379 | MR | Zbl

[3] Pimenov V.G., Lozhnikov A.B., “Raznostnye skhemy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 178–189 | Zbl

[4] Pimenov V.G., Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd-vo Ural. un-ta, Ekaterinburg, 2014, 134 pp.

[5] Sun Z., Zhang Z., “A linearized compact difference scheme for a class of nonlinear delay partial differetial equations”, Appl. Math. Model., 37 (2013), 742–752 | DOI | MR | Zbl

[6] Li D., Zhang C., Wen J., “A note on compact finite difference method for reaction-diffusion equations with delays”, Appl. Math. Model., 39 (2015), 1749–1547 | DOI | MR

[7] Amiraliyev G.M., Cimen E., Amirali I., Cakir M., “High-order finite difference technique for delay pseudo-parabolic equations”, J. Comput. Appl. Math., 321 (2017), 1–7 | DOI | MR | Zbl

[8] Wang W., Rao W., Zhong P., “A posteriori error analysis for Crank-Nicolson-Galerkin type methods for reaction-diffusion equations with delay”, SIAM J. Sci. Comput., 40 (2018), A1095–A1120 | DOI | MR | Zbl

[9] Marchuk G.I., Shaidurov V.V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979, 320 pp. | MR

[10] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[11] Qian L.Z., Gu H.B., “High order compact scheme combined with extrapolation technique for solving convection-diffusion equations”, J. Shandong Univ. Nat. Sci., 46:12 (2003), 39–43 | MR

[12] Zhang Q., Zhang C., “A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations”, Appl. Math. Letters, 26:25 (2013), 306–312 | DOI | MR | Zbl

[13] Zhang C., Tan Z., “Linearized compact difference methods combined with Richardson extrapolation for nonlinear delay Sobolev equations”, Communications in Nonlinear Science and Numerical Simulation, 1 (2020), 105461 | DOI | MR

[14] Deng D., Chen J., “Explicit Richardson extrapolation methods and their analyses for solving two-dimensional nonlinear wave equation with delays”, Networks and Heterogeneous Media, 18:1 (2023), 412–443 | DOI | MR

[15] Kim A.V., Pimenov V.G., i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, M.; Izhevsk, 2004, 256 pp.

[16] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979, 426 pp. | MR

[17] Programmy dlya resheniya uravnenii v chastnykh proizvodnykh s zapazdyvaniem [e-resource], 2023 URL: https://github.com/PDDEsoft/Parabolic