Keywords: functional delay, Crank–Nicolson method, piecewise cubic interpolation, extrapolation by continuation, Richardson method.
@article{TIMM_2023_29_2_a10,
author = {V. G. Pimenov and A. B. Lozhnikov},
title = {Richardson {Method} for a {Diffusion} {Equation} with {Functional} {Delay}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {133--144},
year = {2023},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a10/}
}
V. G. Pimenov; A. B. Lozhnikov. Richardson Method for a Diffusion Equation with Functional Delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 133-144. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a10/
[1] Wu J., Theory and application of partial functional differential equations, Springer-Verlag, NY, 1996, 438 pp. | MR
[2] Kamont Z., Kropelnitska K., “Neyavnye raznostnye metody dlya evolyutsionnykh funktsionalno-differentsialnykh uravnenii”, Sib. zhurn. vychislit. matematiki, 14:4 (2011), 361–379 | MR | Zbl
[3] Pimenov V.G., Lozhnikov A.B., “Raznostnye skhemy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 178–189 | Zbl
[4] Pimenov V.G., Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd-vo Ural. un-ta, Ekaterinburg, 2014, 134 pp.
[5] Sun Z., Zhang Z., “A linearized compact difference scheme for a class of nonlinear delay partial differetial equations”, Appl. Math. Model., 37 (2013), 742–752 | DOI | MR | Zbl
[6] Li D., Zhang C., Wen J., “A note on compact finite difference method for reaction-diffusion equations with delays”, Appl. Math. Model., 39 (2015), 1749–1547 | DOI | MR
[7] Amiraliyev G.M., Cimen E., Amirali I., Cakir M., “High-order finite difference technique for delay pseudo-parabolic equations”, J. Comput. Appl. Math., 321 (2017), 1–7 | DOI | MR | Zbl
[8] Wang W., Rao W., Zhong P., “A posteriori error analysis for Crank-Nicolson-Galerkin type methods for reaction-diffusion equations with delay”, SIAM J. Sci. Comput., 40 (2018), A1095–A1120 | DOI | MR | Zbl
[9] Marchuk G.I., Shaidurov V.V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979, 320 pp. | MR
[10] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR
[11] Qian L.Z., Gu H.B., “High order compact scheme combined with extrapolation technique for solving convection-diffusion equations”, J. Shandong Univ. Nat. Sci., 46:12 (2003), 39–43 | MR
[12] Zhang Q., Zhang C., “A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations”, Appl. Math. Letters, 26:25 (2013), 306–312 | DOI | MR | Zbl
[13] Zhang C., Tan Z., “Linearized compact difference methods combined with Richardson extrapolation for nonlinear delay Sobolev equations”, Communications in Nonlinear Science and Numerical Simulation, 1 (2020), 105461 | DOI | MR
[14] Deng D., Chen J., “Explicit Richardson extrapolation methods and their analyses for solving two-dimensional nonlinear wave equation with delays”, Networks and Heterogeneous Media, 18:1 (2023), 412–443 | DOI | MR
[15] Kim A.V., Pimenov V.G., i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, M.; Izhevsk, 2004, 256 pp.
[16] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979, 426 pp. | MR
[17] Programmy dlya resheniya uravnenii v chastnykh proizvodnykh s zapazdyvaniem [e-resource], 2023 URL: https://github.com/PDDEsoft/Parabolic