On a control synthesis in an enhanced evasion problem for linear discrete-time systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 111-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The evasion problem is considered for linear discrete-time systems with two controls that may have different aims. The aim of one of them is to exclude, regardless of the other, the trajectory hitting a given terminal set at a given final instant, and moreover to exclude the trajectory hitting a sequence of sets given at previous instants. We call it an enhanced evasion problem. Its special case is the problem of trajectory evasion from the terminal set at all instants. A method of control synthesis based on the construction of solvability tubes is presented. However, it is usually quite difficult to accurately construct them. Then it is assumed that the terminal and intermediate sets are parallelepipeds and both controls are bounded by parallelotope-valued constraints. A fast method of control synthesis based on the construction of a pair of polyhedral tubes with parallelepiped-valued cross-sections is proposed and justified. The proposed procedures are applicable for cases with possible degeneration or emptiness of the cross-sections at some instants. The cross-sections of the tubes and the control values are found from explicit formulas. Several variants of the control synthesis formula are given. Examples are given to illustrate the presented method.
Keywords: systems with uncertainties, evasion problem, control synthesis, polyhedral methods, parallelepipeds.
@article{TIMM_2023_29_1_a8,
     author = {E. K. Kostousova},
     title = {On a control synthesis in an enhanced evasion problem for linear discrete-time systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {111--126},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a8/}
}
TY  - JOUR
AU  - E. K. Kostousova
TI  - On a control synthesis in an enhanced evasion problem for linear discrete-time systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 111
EP  - 126
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a8/
LA  - ru
ID  - TIMM_2023_29_1_a8
ER  - 
%0 Journal Article
%A E. K. Kostousova
%T On a control synthesis in an enhanced evasion problem for linear discrete-time systems
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 111-126
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a8/
%G ru
%F TIMM_2023_29_1_a8
E. K. Kostousova. On a control synthesis in an enhanced evasion problem for linear discrete-time systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a8/

[1] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, NY, 1988, 517 pp. | MR | Zbl

[2] Kurzhanski A.B., Vályi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl

[3] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes: theory and computation, Systems Control: Foundations Applications, 85, Birkhäuser, Basel, 2014, 445 pp. | DOI | MR

[4] Taras'ev A.M., Tokmantsev T.B., Uspenskii A.A., Ushakov V.N., “On procedures for constructing solutions in differential games on a finite interval of time”, J. Math. Sci., 139:5 (2006), 6954–6975 | DOI | MR | Zbl

[5] Zarkh M.A., Patsko B.C., “Strategiya vtorogo igroka v lineinoi differentsialnoi igre”, Prikl. matematika i mekhanika, 51:2 (1987), 193–200 | MR | Zbl

[6] Botkin N., Martynov K., Turova V., Diepolder J., “Generation of dangerous disturbances for flight systems”, Dynamic Games and Applications, 9:3 (2019), 628–651 | DOI | MR | Zbl

[7] Esterhuizen W., Wang Q., “Control design with guaranteed transient performance: An approach with polyhedral target tubes”, Automatica, 119 (2020), 109097 | DOI | MR | Zbl

[8] Filimonov A.B., Filimonov N.B., Matvienko V.T., “Poliedralnaya formalizatsiya zadach terminalnogo upravleniya diskretnymi dinamicheskimi ob'ektami”, Vysokoproizvoditelnye vychislitelnye sistemy i tekhnologii, 4:1 (2020), 224–230

[9] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988, 319 pp.

[10] Filippova T.F., “HJB-inequalities in estimating reachable sets of a control system under uncertainty”, Ural Math. J., 8:1 (2022), 34–42 | DOI | MR | Zbl

[11] Gusev M.I., “The limits of applicability of the linearization method in calculating small-time reachable sets”, Ural Math. J., 6:1 (2020), 71–83 | DOI | MR | Zbl

[12] Kurzhanskiy A.A., Varaiya P., “Reach set computation and control synthesis for discrete-time dynamical systems with disturbances”, Automatica, 47:7 (2011), 1414–1426 | DOI | MR | Zbl

[13] Kostousova E.K., “On the polyhedral method of solving problems of control strategy synthesis”, Proc. Steklov Inst. Math., 292, Suppl. 1, 2016, S140–S155 | DOI | MR | Zbl

[14] Kostousova E.K., “On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints”, Discrete and Continuous Dynamical Systems – Series A, 38:12 (2018), 6149–6162 | DOI | MR

[15] Martynov K., Botkin N., Turova V., Diepolder J., “Real-time control of aircraft take-off in windshear. Part I: Aircraft model and control schemes”, 25th Mediterranean Conference on Control and Automation (MED 2017), Proc. (July 3–6, 2017, Valletta, Malta), IEEE Xplore Digital Library, 2017, 277–284 | DOI

[16] Martynov K., Botkin N.D., Turova V.L., Diepolder J., “Quick construction of dangerous disturbances in conflict control problems”, Annals of the International Society of Dynamic Games, 17 (2020), 3–24 | DOI | MR

[17] Kostousova E.K., “O poliedralnom metode sinteza upravlenii v zadache tselevogo ukloneniya v lineinykh mnogoshagovykh sistemakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:3 (2021), 101–114 | DOI | MR

[18] Ushakov V.N., Guseinov Kh.G., Latushkin Ya.A., Lebedev P.D., “O sovpadenii maksimalnykh stabilnykh mostov v dvukh igrovykh zadachakh o sblizhenii dlya statsionarnykh upravlyaemykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 219–240

[19] Schneider R.G., Convex bodies: The Brunn-Minkowski theory, Cambridge Univ. Press, Cambridge, 1993, 490 pp. | MR | Zbl

[20] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, Nauka, M., 1966, 416 pp. | MR

[21] Kostousova E.K., “O dvustoronnikh poliedralnykh otsenkakh mnozhestv dostizhimosti lineinykh mnogoshagovykh sistem s integralnymi ogranicheniyami na upravlenie”, Vychislitelnye tekhnologii, 8:4 (2003), 55–74 | Zbl