@article{TIMM_2023_29_1_a5,
author = {S. V. Zakharov},
title = {Solution of a {Parabolic} {Hamilton{\textendash}Jacobi} {Type} {Equation} {Determined} by a {Simple} {Boundary} {Singularity}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {77--90},
year = {2023},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a5/}
}
TY - JOUR AU - S. V. Zakharov TI - Solution of a Parabolic Hamilton–Jacobi Type Equation Determined by a Simple Boundary Singularity JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 77 EP - 90 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a5/ LA - ru ID - TIMM_2023_29_1_a5 ER -
S. V. Zakharov. Solution of a Parabolic Hamilton–Jacobi Type Equation Determined by a Simple Boundary Singularity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a5/
[1] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Am. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl
[2] Fleming W.H., Soner H.M., Controlled Markov processes and viscosity solutions, Springer, NY, 1993, 429 pp. | MR | Zbl
[3] Bardi M., Crandall M.G., Evans L.C., Soner H.M., Souganidis P.E., Viscosity solutions and applications, Lecture Notes in Math., 1660, eds. eds. by I. Capuzzo Dolcetta, Lions P.-L., Springer, Berlin, 1997, 259 pp. | DOI | MR | Zbl
[4] Benachour S., Karch G., Laurençot Ph., “Asymptotic profiles of solutions to viscous Hamilton–Jacobi equations”, J. Math. Pures Appl., 83:9 (2004), 1275–1308 | DOI | MR | Zbl
[5] Biler P., Guedda M., Karch G., “Asymptotic properties of solutions of the viscous Hamilton–Jacobi equation”, J. Evol. Eq., 4:1 (2004), 75–97 | DOI | MR | Zbl
[6] Arnold V.I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996, 334 pp.
[7] Cannarsa P., Cheng W., “Singularities of solutions of Hamilton–Jacobi equations”, Milan J. Math., 89:3 (2021), 187–215 | DOI | MR | Zbl
[8] Ilin A.M., “Ob asimptotike reshenii odnoi zadachi s malym parametrom”, Izv. AN SSSR. Ser. matematicheskaya, 53:2 (1989), 258–275 | MR
[9] Zakharov S.V., “Osobennosti tipov $A$ i $B$ v asimptoticheskom analize reshenii parabolicheskogo uravneniya”, Funkts. analiz i ego prilozheniya, 49:4 (2015), 82–85 | DOI | Zbl
[10] Konopelchenko B., “Unfolding of singularities and differential equations”, Note di Matematica, 32:1 (2012), 125–145 | DOI | MR | Zbl
[11] Lychagin V.V., “Geometricheskaya teoriya osobennostei reshenii nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Ser. problemy geometrii, 20, VINITI, M., 1988, 207–247
[12] Arnold V.I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, Uspekhi mat. nauk, 33:5 (1978), 91–105 | MR | Zbl
[13] Zakharov S.V., “Asimptoticheskoe reshenie odnoi zadachi Koshi v okrestnosti gradientnoi katastrofy”, Mat. sb., 197:6 (2006), 47–62 | DOI | Zbl
[14] Fedoryuk M.V., Asimptotika: integraly i ryady, Nauka, M., 1987, 544 pp. | MR
[15] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR
[16] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.