Solution of a Parabolic Hamilton–Jacobi Type Equation Determined by a Simple Boundary Singularity
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 77-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a parabolic Hamilton–Jacobi type equation $S_t +2^{-1} (S_x)^2 +V(x,\varepsilon) =S_{xx}$, a special asymptotic solution with a prescribed asymptotic expansion of the potential function is constructed. Since this asymptotic expansion is chosen for simplicity in the form of a series in natural powers of the small parameter $\varepsilon$, the asymptotic solution of the equation is presented in the form of a series of perturbation theory in integer powers of $\varepsilon$: $S (x,t,\varepsilon) =\sum_{n =0}^{\infty} \varepsilon^{n} S_n (x,t)$. The leading approximation of the solution is expressed in terms of an exponential integral as $$ S_0 (x,t) =-2 \ln \int\nolimits_{0}^{+\infty} \exp \left( -\sigma^3 +t \sigma^2 +x \sigma \right) d{\sigma}, $$ where the versal deformation of the germ of the simple boundary singularity $B_3$ serves as the phase. The asymptotic behavior of this integral in the space variable at infinity is studied by the Laplace method. On the basis of an integral recurrence formula with the homogeneous initial condition for the remaining coefficients $S_n (x,t)$, an existence theorem is proved. Exponential estimates of these coefficients are also established; they provide the convergence of the corresponding integral convolutions. A successive growth is shown for the orders of smallness of the residuals remaining after the substitution of the partial sums of the asymptotic solution into the equation under consideration. In addition, it is proved that there exists a unique classical solution and the constructed asymptotic series is its asymptotic expansion. The statement of the problem under consideration is also discussed in the light of known approaches to studying the Hamilton–Jacobi equation. The connection of the obtained result with the general theory of singularities of differentiable maps is shown.
Keywords: parabolic Hamilton–Jacobi type equation, simple boundary singularity, versal deformation, asymptotic solution, Laplace method.
@article{TIMM_2023_29_1_a5,
     author = {S. V. Zakharov},
     title = {Solution of a {Parabolic} {Hamilton{\textendash}Jacobi} {Type} {Equation} {Determined} by a {Simple} {Boundary} {Singularity}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {77--90},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a5/}
}
TY  - JOUR
AU  - S. V. Zakharov
TI  - Solution of a Parabolic Hamilton–Jacobi Type Equation Determined by a Simple Boundary Singularity
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 77
EP  - 90
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a5/
LA  - ru
ID  - TIMM_2023_29_1_a5
ER  - 
%0 Journal Article
%A S. V. Zakharov
%T Solution of a Parabolic Hamilton–Jacobi Type Equation Determined by a Simple Boundary Singularity
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 77-90
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a5/
%G ru
%F TIMM_2023_29_1_a5
S. V. Zakharov. Solution of a Parabolic Hamilton–Jacobi Type Equation Determined by a Simple Boundary Singularity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a5/

[1] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Am. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl

[2] Fleming W.H., Soner H.M., Controlled Markov processes and viscosity solutions, Springer, NY, 1993, 429 pp. | MR | Zbl

[3] Bardi M., Crandall M.G., Evans L.C., Soner H.M., Souganidis P.E., Viscosity solutions and applications, Lecture Notes in Math., 1660, eds. eds. by I. Capuzzo Dolcetta, Lions P.-L., Springer, Berlin, 1997, 259 pp. | DOI | MR | Zbl

[4] Benachour S., Karch G., Laurençot Ph., “Asymptotic profiles of solutions to viscous Hamilton–Jacobi equations”, J. Math. Pures Appl., 83:9 (2004), 1275–1308 | DOI | MR | Zbl

[5] Biler P., Guedda M., Karch G., “Asymptotic properties of solutions of the viscous Hamilton–Jacobi equation”, J. Evol. Eq., 4:1 (2004), 75–97 | DOI | MR | Zbl

[6] Arnold V.I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996, 334 pp.

[7] Cannarsa P., Cheng W., “Singularities of solutions of Hamilton–Jacobi equations”, Milan J. Math., 89:3 (2021), 187–215 | DOI | MR | Zbl

[8] Ilin A.M., “Ob asimptotike reshenii odnoi zadachi s malym parametrom”, Izv. AN SSSR. Ser. matematicheskaya, 53:2 (1989), 258–275 | MR

[9] Zakharov S.V., “Osobennosti tipov $A$ i $B$ v asimptoticheskom analize reshenii parabolicheskogo uravneniya”, Funkts. analiz i ego prilozheniya, 49:4 (2015), 82–85 | DOI | Zbl

[10] Konopelchenko B., “Unfolding of singularities and differential equations”, Note di Matematica, 32:1 (2012), 125–145 | DOI | MR | Zbl

[11] Lychagin V.V., “Geometricheskaya teoriya osobennostei reshenii nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Ser. problemy geometrii, 20, VINITI, M., 1988, 207–247

[12] Arnold V.I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, Uspekhi mat. nauk, 33:5 (1978), 91–105 | MR | Zbl

[13] Zakharov S.V., “Asimptoticheskoe reshenie odnoi zadachi Koshi v okrestnosti gradientnoi katastrofy”, Mat. sb., 197:6 (2006), 47–62 | DOI | Zbl

[14] Fedoryuk M.V., Asimptotika: integraly i ryady, Nauka, M., 1987, 544 pp. | MR

[15] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[16] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.