@article{TIMM_2023_29_1_a4,
author = {A. R. Danilin and A. A. Shaburov},
title = {Asymptotics of a {Solution} to an {Optimal} {Control} {Problem} with {Integral} {Convex} {Performance} {Index,} {Cheap} {Control,} and {Initial} {Data} {Perturbations}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {67--76},
year = {2023},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a4/}
}
TY - JOUR AU - A. R. Danilin AU - A. A. Shaburov TI - Asymptotics of a Solution to an Optimal Control Problem with Integral Convex Performance Index, Cheap Control, and Initial Data Perturbations JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 67 EP - 76 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a4/ LA - ru ID - TIMM_2023_29_1_a4 ER -
%0 Journal Article %A A. R. Danilin %A A. A. Shaburov %T Asymptotics of a Solution to an Optimal Control Problem with Integral Convex Performance Index, Cheap Control, and Initial Data Perturbations %J Trudy Instituta matematiki i mehaniki %D 2023 %P 67-76 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a4/ %G ru %F TIMM_2023_29_1_a4
A. R. Danilin; A. A. Shaburov. Asymptotics of a Solution to an Optimal Control Problem with Integral Convex Performance Index, Cheap Control, and Initial Data Perturbations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 67-76. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a4/
[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR
[2] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 476 pp.
[3] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.
[4] Dmitriev M.G., Kurina G.A., “Singulyarnye vozmuscheniya v zadachakh upravleniya ”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | Zbl
[5] Zhang Y., Naidu D.S., Cai C., Zou Y., “Singular perturbation and time scales in control theories and applications: an overview 2002–2012”, Internat. J. of Information and Systems Sciences, 9:1 (2014), 1–36 | MR
[6] Kurina G.A., Kalashnikova M.A., “Singulyarno vozmuschennye zadachi s raznotempovymi bystrymi peremennymi”, Avtomatika i telemekhanika, 2022, no. 11, 3–61 | DOI
[7] Glizer V.Ya., Dmitriev M.G., “Asimptotika resheniya odnoi singulyarno vozmuschennoi zadachi Koshi, voznikayuschei v teorii optimalnogo upravleniya”, Differents. uravneniya, 14:4 (1978), 601–612 | MR | Zbl
[8] Hoai N.T., “Asymptotic solution of a singularly perturbed linear–quadratic problem in critical case with cheap control”, J. Optim. Theory Appl., 175:2 (2017), 324–340 | DOI | MR | Zbl
[9] Kalashnikova M.A., Kurina G.A., “Pryamaya skhema asimptoticheskogo resheniya lineino-kvadratichnykh zadach s deshevymi upravleniyami raznoi tseny”, Differents. uravneniya, 55:1 (2019), 83–102 | DOI | MR | Zbl
[10] Danilin A.R., Ilin A.M., “Asimptoticheskoe povedenie resheniya zadachi bystrodeistviya dlya lineinoi sistemy pri vozmuschenii nachalnykh dannykh”, Dokl. RAN, 350:2 (1996), 155–157 | MR | Zbl
[11] Danilin A.R., Ilin A.M., “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i priklad. matematika, 4:3 (1998), 905–926 | MR | Zbl
[12] Danilin A.R., Shaburov A.A., “Asimptoticheskoe razlozhenie resheniya zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva i deshevym upravleniem”, Sib. zhurn. industr. matematiki, 25:3 (2022), 5–13 | DOI
[13] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 471 pp.
[14] Galeev E.M., Tikhomirov V.M., Kratkii kurs teorii ekstremalnykh zadach, Izd-vo MGU, M., 1989, 204 pp.
[15] Danilin A.R., Kovrizhnykh O.O., “Asimptotika resheniya singulyarno vozmuschennoi zadachi bystrodeistviya s dvumya malymi parametrami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:2 (2019), 88–101 | DOI
[16] Danilin A.R., Kovrizhnykh O.O., “Asimptotika resheniya odnoi zadachi bystrodeistviya s neogranichennym tselevym mnozhestvom dlya lineinoi sistemy v kriticheskom sluchae”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:1 (2022), 58–73 | DOI | MR