Asymptotics of a Solution to an Optimal Control Problem with Integral Convex Performance Index, Cheap Control, and Initial Data Perturbations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 67-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an optimal control problem in the class of piecewise continuous controls with smooth geometric constraints for a linear system with constant coefficients and an integral convex performance index containing two small parameters (the first of them multiplying the integral term, and the second in the initial data). Such problems are called cheap control problems. It is shown that the limit problem is a problem with terminal performance index. It is established that if the limit problem is actually one-dimensional whereas the initial problem is not, then the asymptotics of the solution can be more complicated. In particular, the asymptotics of the solution may have no expansion in the Poincare sense in any asymptotic sequence of rational functions of the small parameter or its logarithms.
Keywords: optimal control, cheap control, asymptotic expansion, small parameter.
@article{TIMM_2023_29_1_a4,
     author = {A. R. Danilin and A. A. Shaburov},
     title = {Asymptotics of a {Solution} to an {Optimal} {Control} {Problem} with {Integral} {Convex} {Performance} {Index,} {Cheap} {Control,} and {Initial} {Data} {Perturbations}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {67--76},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a4/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - A. A. Shaburov
TI  - Asymptotics of a Solution to an Optimal Control Problem with Integral Convex Performance Index, Cheap Control, and Initial Data Perturbations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 67
EP  - 76
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a4/
LA  - ru
ID  - TIMM_2023_29_1_a4
ER  - 
%0 Journal Article
%A A. R. Danilin
%A A. A. Shaburov
%T Asymptotics of a Solution to an Optimal Control Problem with Integral Convex Performance Index, Cheap Control, and Initial Data Perturbations
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 67-76
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a4/
%G ru
%F TIMM_2023_29_1_a4
A. R. Danilin; A. A. Shaburov. Asymptotics of a Solution to an Optimal Control Problem with Integral Convex Performance Index, Cheap Control, and Initial Data Perturbations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 67-76. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a4/

[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 476 pp.

[3] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[4] Dmitriev M.G., Kurina G.A., “Singulyarnye vozmuscheniya v zadachakh upravleniya ”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | Zbl

[5] Zhang Y., Naidu D.S., Cai C., Zou Y., “Singular perturbation and time scales in control theories and applications: an overview 2002–2012”, Internat. J. of Information and Systems Sciences, 9:1 (2014), 1–36 | MR

[6] Kurina G.A., Kalashnikova M.A., “Singulyarno vozmuschennye zadachi s raznotempovymi bystrymi peremennymi”, Avtomatika i telemekhanika, 2022, no. 11, 3–61 | DOI

[7] Glizer V.Ya., Dmitriev M.G., “Asimptotika resheniya odnoi singulyarno vozmuschennoi zadachi Koshi, voznikayuschei v teorii optimalnogo upravleniya”, Differents. uravneniya, 14:4 (1978), 601–612 | MR | Zbl

[8] Hoai N.T., “Asymptotic solution of a singularly perturbed linear–quadratic problem in critical case with cheap control”, J. Optim. Theory Appl., 175:2 (2017), 324–340 | DOI | MR | Zbl

[9] Kalashnikova M.A., Kurina G.A., “Pryamaya skhema asimptoticheskogo resheniya lineino-kvadratichnykh zadach s deshevymi upravleniyami raznoi tseny”, Differents. uravneniya, 55:1 (2019), 83–102 | DOI | MR | Zbl

[10] Danilin A.R., Ilin A.M., “Asimptoticheskoe povedenie resheniya zadachi bystrodeistviya dlya lineinoi sistemy pri vozmuschenii nachalnykh dannykh”, Dokl. RAN, 350:2 (1996), 155–157 | MR | Zbl

[11] Danilin A.R., Ilin A.M., “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i priklad. matematika, 4:3 (1998), 905–926 | MR | Zbl

[12] Danilin A.R., Shaburov A.A., “Asimptoticheskoe razlozhenie resheniya zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva i deshevym upravleniem”, Sib. zhurn. industr. matematiki, 25:3 (2022), 5–13 | DOI

[13] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 471 pp.

[14] Galeev E.M., Tikhomirov V.M., Kratkii kurs teorii ekstremalnykh zadach, Izd-vo MGU, M., 1989, 204 pp.

[15] Danilin A.R., Kovrizhnykh O.O., “Asimptotika resheniya singulyarno vozmuschennoi zadachi bystrodeistviya s dvumya malymi parametrami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:2 (2019), 88–101 | DOI

[16] Danilin A.R., Kovrizhnykh O.O., “Asimptotika resheniya odnoi zadachi bystrodeistviya s neogranichennym tselevym mnozhestvom dlya lineinoi sistemy v kriticheskom sluchae”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:1 (2022), 58–73 | DOI | MR