Mots-clés : elliptic equation
@article{TIMM_2023_29_1_a2,
author = {D. I. Borisov},
title = {Operator {Estimates} in {Two-Dimensional} {Problems} with a {Frequent} {Alternation} in the {Case} of {Small} {Parts} with the {Dirichlet} {Condition}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {36--55},
year = {2023},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a2/}
}
TY - JOUR AU - D. I. Borisov TI - Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 36 EP - 55 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a2/ LA - ru ID - TIMM_2023_29_1_a2 ER -
%0 Journal Article %A D. I. Borisov %T Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition %J Trudy Instituta matematiki i mehaniki %D 2023 %P 36-55 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a2/ %G ru %F TIMM_2023_29_1_a2
D. I. Borisov. Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 36-55. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a2/
[1] Marchenko V.A., Khruslov E.Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974, 280 pp. | MR
[2] Damlamian A., Li Ta-Tsien., “Boundary homogenization for ellpitic problems”, J. Math. Pures Appl. (9), 66:4 (1987), 351–361 | MR | Zbl
[3] Lobo M., Pérez M.E., “Asymptotic behaviour of an elastic body with a surface having small stuck regions”, Math. Model. Numer. Anal., 22:4 (1988), 609–624 | DOI | MR | Zbl
[4] Lobo M., Pérez M.E., “Boundary homogenization of certain elliptic problems for cylindrical bodies”, Bull. Sci. Math, Ser. 2, 116 (1992), 399–426 | MR | Zbl
[5] Chechkin G.A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Mat. sb., 184:6 (1993) | Zbl
[6] Friedman A., Huang Ch., Yong J., “Effective permeability of the boundary of a domain”, Comm. Part. Diff. Equat., 20:1-2 (1995), 59–102 | DOI | MR | Zbl
[7] Belyaev A.Yu., Chechkin G.A., “Usrednenie operatorov s melkomasshtabnoi strukturoi”, Mat. zametki, 65:4 (1999), 496–510 | DOI | Zbl
[8] Dávila J., “A nonlinear elliptic equation with rapidly oscillating boundary conditions”, Asympt. Anal., 28:3-4 (2001), 279–307 | MR | Zbl
[9] Borisov D., Cardone G., “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A: Math. Theor., 42:36 (2009), 365205 | DOI | MR | Zbl
[10] Borisov D., Bunoiu R., Cardone G., “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. H. Poincaré, 11:8 (2010), 1591–1627 | DOI | MR | Zbl
[11] Borisov D., Bunoiu R., G. Cardone, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Zeit. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR | Zbl
[12] Sharapov T.F., “O rezolvente mnogomernykh operatorov s chastoi smenoi kraevykh uslovii v sluchae usrednennogo usloviya Dirikhle”, Mat. sb., 205:10 (2014), 125–160 | DOI | Zbl
[13] Sharapov T.F., “O rezolvente mnogomernykh operatorov s chastoi smenoi kraevykh uslovii: kriticheskii sluchai”, Ufim. mat. zhurn., 8:2 (2016), 66–96 | Zbl
[14] Borisov D.I., Konyrkulzhaeva M.N., “Operatornye $L_2$-otsenki dlya dvumernykh zadach s chastoi smenoi kraevykh uslovii”, Problemy mat. analiza, 2022, no. 117, 31–46 | Zbl
[15] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR
[16] Borisov D.I., “Ob operatornykh otsenkakh dlya ploskikh oblastei s neregulyarnym iskrivleniem granitsy: usloviya Dirikhle i Neimana”, Problemy mat. analiza, 116 (2022), 69–84 | Zbl
[17] Borisov D.I., “O ravnomernoi rezolventnoi skhodimosti ellipticheskikh operatorov v oblastyakh s tonkimi otrostkami”, Problemy mat. analiza, 114 (2022), 15–36
[18] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR
[19] Dubinskii Yu.A., “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhniki. Ser. Sovremen. problemy matematiki, 9:8 (1976), 5–130 | Zbl
[20] Borisov D.I., Kr̆íz̆ J., “Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: vanishing limit”, Anal. Math. Phys., 13 (2023), 5 | DOI | MR | Zbl
[21] Senik N.N., “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898 | DOI | MR | Zbl
[22] Senik N.N., “Homogenization for locally periodic elliptic operators”, J. Math. Anal. Appl., 505:2 (2021), 125581 | DOI | MR
[23] Pastukhova S.E., “Ob otsenkakh usredneniya dlya singulyarno vozmuschennykh operatorov”, Problemy mat. analiza, 106 (2020), 149–168 | Zbl
[24] Pastukhova S.E., “$L_2$-approksimatsiya rezolventy v usrednenii ellipticheskikh operatorov vysokogo poryadka”, Problemy mat. analiza, 107 (2020), 113–132 | Zbl
[25] Pastukhova S.E., “$L_2$-approksimatsiya rezolventy v usrednenii ellipticheskikh operatorov chetvertogo poryadka”, Mat. sb., 212:1 (2021), 119–142 | DOI | MR | Zbl
[26] Borisov D.I., “Asimptotiki i otsenki sobstvennykh elementov Laplasiana s chastoi neperiodicheskoi smenoi granichnykh uslovii”, Izv. RAN. Ser. matematicheskaya, 67:6 (2003), 23–70 | DOI | MR | Zbl