Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 36-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A two-dimensional boundary value problem is studied for a general scalar elliptic second-order equation of the general form with frequent alternation of boundary conditions. The alternation is defined on small, closely spaced parts of the boundary on which the Dirichlet boundary condition and the nonlinear Robin boundary condition are set alternately. The distribution and size of these segments are arbitrary. The case is considered when, upon homogenization, the Dirichlet boundary condition completely disappears and only the original nonlinear Robin boundary condition remains. The main result is estimates for the $W_2^1$- and $L_2$-norms of the difference between the solutions of the perturbed and homogenized problems, which are uniform in the $L_2$-norm of the right-hand side and characterize the rate of convergence. It is shown that these estimates are order sharp.
Keywords: two-dimensional boundary value problem, frequent alternation, homogenization, operator estimate.
Mots-clés : elliptic equation
@article{TIMM_2023_29_1_a2,
     author = {D. I. Borisov},
     title = {Operator {Estimates} in {Two-Dimensional} {Problems} with a {Frequent} {Alternation} in the {Case} of {Small} {Parts} with the {Dirichlet} {Condition}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {36--55},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a2/}
}
TY  - JOUR
AU  - D. I. Borisov
TI  - Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 36
EP  - 55
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a2/
LA  - ru
ID  - TIMM_2023_29_1_a2
ER  - 
%0 Journal Article
%A D. I. Borisov
%T Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 36-55
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a2/
%G ru
%F TIMM_2023_29_1_a2
D. I. Borisov. Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 36-55. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a2/

[1] Marchenko V.A., Khruslov E.Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974, 280 pp. | MR

[2] Damlamian A., Li Ta-Tsien., “Boundary homogenization for ellpitic problems”, J. Math. Pures Appl. (9), 66:4 (1987), 351–361 | MR | Zbl

[3] Lobo M., Pérez M.E., “Asymptotic behaviour of an elastic body with a surface having small stuck regions”, Math. Model. Numer. Anal., 22:4 (1988), 609–624 | DOI | MR | Zbl

[4] Lobo M., Pérez M.E., “Boundary homogenization of certain elliptic problems for cylindrical bodies”, Bull. Sci. Math, Ser. 2, 116 (1992), 399–426 | MR | Zbl

[5] Chechkin G.A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Mat. sb., 184:6 (1993) | Zbl

[6] Friedman A., Huang Ch., Yong J., “Effective permeability of the boundary of a domain”, Comm. Part. Diff. Equat., 20:1-2 (1995), 59–102 | DOI | MR | Zbl

[7] Belyaev A.Yu., Chechkin G.A., “Usrednenie operatorov s melkomasshtabnoi strukturoi”, Mat. zametki, 65:4 (1999), 496–510 | DOI | Zbl

[8] Dávila J., “A nonlinear elliptic equation with rapidly oscillating boundary conditions”, Asympt. Anal., 28:3-4 (2001), 279–307 | MR | Zbl

[9] Borisov D., Cardone G., “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A: Math. Theor., 42:36 (2009), 365205 | DOI | MR | Zbl

[10] Borisov D., Bunoiu R., Cardone G., “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. H. Poincaré, 11:8 (2010), 1591–1627 | DOI | MR | Zbl

[11] Borisov D., Bunoiu R., G. Cardone, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Zeit. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR | Zbl

[12] Sharapov T.F., “O rezolvente mnogomernykh operatorov s chastoi smenoi kraevykh uslovii v sluchae usrednennogo usloviya Dirikhle”, Mat. sb., 205:10 (2014), 125–160 | DOI | Zbl

[13] Sharapov T.F., “O rezolvente mnogomernykh operatorov s chastoi smenoi kraevykh uslovii: kriticheskii sluchai”, Ufim. mat. zhurn., 8:2 (2016), 66–96 | Zbl

[14] Borisov D.I., Konyrkulzhaeva M.N., “Operatornye $L_2$-otsenki dlya dvumernykh zadach s chastoi smenoi kraevykh uslovii”, Problemy mat. analiza, 2022, no. 117, 31–46 | Zbl

[15] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR

[16] Borisov D.I., “Ob operatornykh otsenkakh dlya ploskikh oblastei s neregulyarnym iskrivleniem granitsy: usloviya Dirikhle i Neimana”, Problemy mat. analiza, 116 (2022), 69–84 | Zbl

[17] Borisov D.I., “O ravnomernoi rezolventnoi skhodimosti ellipticheskikh operatorov v oblastyakh s tonkimi otrostkami”, Problemy mat. analiza, 114 (2022), 15–36

[18] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR

[19] Dubinskii Yu.A., “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhniki. Ser. Sovremen. problemy matematiki, 9:8 (1976), 5–130 | Zbl

[20] Borisov D.I., Kr̆íz̆ J., “Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: vanishing limit”, Anal. Math. Phys., 13 (2023), 5 | DOI | MR | Zbl

[21] Senik N.N., “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898 | DOI | MR | Zbl

[22] Senik N.N., “Homogenization for locally periodic elliptic operators”, J. Math. Anal. Appl., 505:2 (2021), 125581 | DOI | MR

[23] Pastukhova S.E., “Ob otsenkakh usredneniya dlya singulyarno vozmuschennykh operatorov”, Problemy mat. analiza, 106 (2020), 149–168 | Zbl

[24] Pastukhova S.E., “$L_2$-approksimatsiya rezolventy v usrednenii ellipticheskikh operatorov vysokogo poryadka”, Problemy mat. analiza, 107 (2020), 113–132 | Zbl

[25] Pastukhova S.E., “$L_2$-approksimatsiya rezolventy v usrednenii ellipticheskikh operatorov chetvertogo poryadka”, Mat. sb., 212:1 (2021), 119–142 | DOI | MR | Zbl

[26] Borisov D.I., “Asimptotiki i otsenki sobstvennykh elementov Laplasiana s chastoi neperiodicheskoi smenoi granichnykh uslovii”, Izv. RAN. Ser. matematicheskaya, 67:6 (2003), 23–70 | DOI | MR | Zbl