Exact constants in Jackson–Stechkin inequality in $L^{2}$ with a power-law weight
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 259-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we have solved several extremal problems of the best mean-square approximation of function $f$, on the semiaxis with a power-law weight, which can be used to solve various problems. Sharp Jackson–Stechkin type inequalities are obtained on some classes of functions in which the values of the best approximations are estimated from above through moduli of smoothness of the $k$-th order.
Keywords: exact constants in Jackson–Stechkin inequality, moduli of smoothness, best approximations, Bessel function.
@article{TIMM_2023_29_1_a19,
     author = {T. E. Tileubayev},
     title = {Exact constants in {Jackson{\textendash}Stechkin} inequality in $L^{2}$ with a power-law weight},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {259--279},
     year = {2023},
     volume = {29},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a19/}
}
TY  - JOUR
AU  - T. E. Tileubayev
TI  - Exact constants in Jackson–Stechkin inequality in $L^{2}$ with a power-law weight
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 259
EP  - 279
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a19/
LA  - en
ID  - TIMM_2023_29_1_a19
ER  - 
%0 Journal Article
%A T. E. Tileubayev
%T Exact constants in Jackson–Stechkin inequality in $L^{2}$ with a power-law weight
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 259-279
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a19/
%G en
%F TIMM_2023_29_1_a19
T. E. Tileubayev. Exact constants in Jackson–Stechkin inequality in $L^{2}$ with a power-law weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 259-279. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a19/

[1] Arestov V.V., Babenko A.G, Deikalova M.V., Horv'ath A., “Nikol'skii Inequality Between the Uniform Norm and Integral Norm with Bessel Weight for Entire Functions of Exponential Type on the Half-Line”, Anal. Math., 44:1 (2018), 21–42 | DOI | MR | Zbl

[2] Arestov V.V., Popov V.Yu., “Jackson inequalities on a sphere in $L_2$”, Russian Math. (Iz. VUZ), 39:8 (1995), 11–18 | MR | Zbl

[3] Babenko A.G., “Exact Jackson–Stechkin inequality in the space $L_2(\mathbb{R}^m)$”, Trudy Inst Math. Mekh., 5 (1998), 183–198 (in Russian) | Zbl

[4] Berdysheva E.E., “Two related extremal problems for entire functions of several variables”, Math. Notes, 66:3 (1999), 271–282 | DOI | MR | Zbl

[5] Betancor J.J., Rodriguez-Mesa L., “On the Besov–Hankel spaces”, J. Math Soc. Japan., 50:3 (1998), 781–788 | DOI | MR | Zbl

[6] Chernykh N.I., “Jackson's inequality in $L_2$”, Proc. Steklov Inst. Math., 88, 1967, 75–78 | MR | Zbl

[7] Chernykh N.I., “The best approximation of periodic functions by trigonometric polynomials in $L_2$”, Math. Notes, 2:5 (1967), 803–808 | DOI | MR

[8] Esmaganbetov M.G., “Widths of classes from $L_2[0,2\pi]$ and the minimization of exact constants in Jackson-type inequalities”, Math. Notes, 65:6 (1999), 689–693 | DOI | MR | Zbl

[9] Gorbachev D.V., “Extremum problems for entire functions of exponential spherical type”, Math. Notes, 68:2 (2000), 159–166 | DOI | MR | Zbl

[10] Gorbachev D.V., “An estimate of an optimal argument in the sharp multidimensional Jackson-Stechkin $L_2$-inequality”, Proc. Steklov Inst. Math., 288, Suppl. 1, 2015, 70–78 | DOI | MR

[11] Hirschman I.I., “Variation diminishing Hankel transforms”, J. d'analyse Mathematique, 8:1 (1960), 307–336 | DOI | MR

[12] Ibragimov I.I., Nasibov F.G., “The estimation of the best approximation of a summable function on the real axis by means of entire functions of finite degree”, Soviet Math., 11 (1970), 1332–1336 | MR | Zbl

[13] Ivanov V.I., “On the Sharpness of Jackson's Inequality in the Spaces $L_p$ on the Half-Line with Power Weight”, Math. Notes, 98:5 (2015), 742–751 | DOI | MR | Zbl

[14] Korneychuk N.P., Exact constants in approximation theory, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge, 2009, 468 pp. ; Nauka Publ., Moscow, 1987, 424 pp. | MR

[15] Levitan B.M., “Expansion in Fourier series and integrals in Bessel functions”, Uspekhi Mat. Nauk (Russian Math. Surveys), 6:2(42) (1951), 102–143 (in Russian) | MR | Zbl

[16] Li J., Liu Y.P., “The Jackson Inequality for the Best $L_2$-Approximation of Functions on $[0,1]$ with the Weight $x$”, Numer. Math. Theory Methods Appl., 1:3 (2008), 340–356 | MR | Zbl

[17] Moskovsky A.V., “Jackson's theorems in the spaces $L_p(R_n)$ and $L_p,\lambda(R+)$”, Izvestiya of Tula State Univ. Ser. Math., Mekh., Inform., 3:1 (1997), 44–70 (in Russian) | MR

[18] Moskovsky A.V., “Jackson's theorems in the spaces $L_p(R_n),$ $L_p,\lambda(R+),$ $1\le p\le 2$”, Izvestiya of Tula State Univ. Ser. Math., Mekh., Inform., 4:1 (1998), 97–101 (in Russian) | MR

[19] Nikol'skii S.M., Lizorkin P.I., “Approximation of functions on the sphere”, Math. USSR. Izv., 30:3 (1988), 599–614 | DOI | MR | Zbl

[20] Platonov S.S., “Bessel harmonic analysis and approximation of functions on the half-line”, Izv. Math., 71:5 (2007), 1001–1048 | DOI | MR | Zbl

[21] Popov V.Yu., “On the best mean square approximations by entire functions of exponential type”, Soviet Math. (Iz. VUZ), 6 (1972), 65–73 (in Russian) | MR | Zbl

[22] Shabozov M.Sh., Tukhliev K., Murodov K.N., “Exact estimates for the rate of convergence of Fourier–Bessel ranks and values of $n$-widths of some classes of functions”, Questions of comput. and appl. math., 2 (2015), 39–47 (in Russian) | MR

[23] Rustamov Kh.P., “On approximation of functions on the sphere”, Izv. Math., 43:2 (1994), 311–329 | DOI | MR

[24] Shabozov M.Sh., “Widths of Classes of Periodic Differentiable Functions in the Space $L_2[0,2\pi]$”, Math. Notes, 87:3-4 (2010), 575–581 | DOI | MR | Zbl

[25] Shalaev V.V., “Widths in $L_2$ of classes of differentiable functions defined by higher-order moduli of continuity”, Ukr. Math. J., 43:1 (1991), 104–107 | DOI | MR | Zbl

[26] Shabozov M.Sh., Yusupov G.A., “On the exact values of average $\nu$-widths of some classes of entire functions”, Trudy Inst. Math. Mekh., 18:4 (2012), 315–327 (in Russian) | MR

[27] Stein E.M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971, 312 pp. ; Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir publ., Moscow, 1974, 328 pp. | MR | Zbl

[28] Taikov L.V., “Structural and constructive characteristics of functions in $L_2$”, Math. Notes, 25:2 (1979), 113–116 | DOI | MR | Zbl

[29] Trimeche K., “Inversion of the Lions Transmutation Operators Using Generalized Wavelets”, Appl. Comput. Harmonic Anal., 4:1 (1997), 97–112 | DOI | MR | Zbl

[30] Trimeche K., Generalized Harmonic Analysis and Wavelet Packets: An Elementary Treatment of Theory and Applications, CRC Press, London, 2001, 320 pp. | DOI | MR

[31] Vakarchuk S.B., “Jackson-type inequalities for the special moduli of continuity on the entire real axis and the exact values of mean $\nu$-widths for the classes of functions in the space $L^2(R)$”, Ukr. Math J., 66:6 (2014), 827–856 | DOI | MR | Zbl

[32] Vakarchuk S.B., Shabozov M.Sh., Langarshoev M.R., “On the best mean square approximations by entire functions of exponential type in $L_2(R)$ and mean $\nu$-widths of some functional classes”, Russian Math. (Iz. VUZ), 58:7 (2014), 25–41 | DOI | MR | Zbl

[33] Vakarchuk S.B., Shabozov M.Sh., Zabutnaya V.I., “Structural characteristics of functions from $L^2$ and the exact values of widths of some functional classes”, J. Math. Sci., 206:1 (2015), 97–114 | DOI | MR | Zbl

[34] Watson G.N., A treatise of the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1945, vii+804 pp. ; Teoriya besselevykh funktsii, Inostr. Liter publ., Moscow, 1949, 799 pp. | MR

[35] Yudin V.A., “Multidimensional Jackson Theorem in $L_2$”, Math. Notes, 29:2 (1981), 158–162 | DOI | MR | Zbl

[36] Yudin V.A., “Extremality properties of functions and designs on the torus”, Math. Notes, 61:4 (1997), 530–533 | DOI | MR | Zbl