Exact constants in Jackson--Stechkin inequality in $L^{2}$ with a power-law weight
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 259-279

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we have solved several extremal problems of the best mean-square approximation of function $f$, on the semiaxis with a power-law weight, which can be used to solve various problems. Sharp Jackson–Stechkin type inequalities are obtained on some classes of functions in which the values of the best approximations are estimated from above through moduli of smoothness of the $k$-th order.
Keywords: exact constants in Jackson–Stechkin inequality, moduli of smoothness, best approximations, Bessel function.
@article{TIMM_2023_29_1_a19,
     author = {T. E. Tileubayev},
     title = {Exact constants in {Jackson--Stechkin} inequality in $L^{2}$ with a power-law weight},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {259--279},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a19/}
}
TY  - JOUR
AU  - T. E. Tileubayev
TI  - Exact constants in Jackson--Stechkin inequality in $L^{2}$ with a power-law weight
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 259
EP  - 279
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a19/
LA  - en
ID  - TIMM_2023_29_1_a19
ER  - 
%0 Journal Article
%A T. E. Tileubayev
%T Exact constants in Jackson--Stechkin inequality in $L^{2}$ with a power-law weight
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 259-279
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a19/
%G en
%F TIMM_2023_29_1_a19
T. E. Tileubayev. Exact constants in Jackson--Stechkin inequality in $L^{2}$ with a power-law weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 259-279. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a19/