Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 254-258

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $M$ of a group $G$ is an $n$-maximal subgroups of $G$ if there is a subgroup chain $M=M_n\leq M_{n-1}\leq \ldots \leq M_1\leq M_0=G$ such that $M_{i+1}$ is a maximal subgroup of $M_i$. We establish a criterion for a group with absolutely $\mathfrak{F}$-subnormal $n$-maximal subgroups to belong to a subgroup-closed saturated formation $\mathfrak{F}$ containing all nilpotent groups.
Keywords: finite group, maximal subgroup, subnormal subgroup.
@article{TIMM_2023_29_1_a18,
     author = {I. L. Sokhor},
     title = {Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {254--258},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a18/}
}
TY  - JOUR
AU  - I. L. Sokhor
TI  - Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 254
EP  - 258
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a18/
LA  - en
ID  - TIMM_2023_29_1_a18
ER  - 
%0 Journal Article
%A I. L. Sokhor
%T Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 254-258
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a18/
%G en
%F TIMM_2023_29_1_a18
I. L. Sokhor. Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 254-258. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a18/