Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 254-258
Voir la notice de l'article provenant de la source Math-Net.Ru
A subgroup $M$ of a group $G$ is an $n$-maximal subgroups of $G$
if there is a subgroup chain
$M=M_n\leq M_{n-1}\leq \ldots \leq M_1\leq M_0=G$
such that $M_{i+1}$ is a maximal subgroup of $M_i$.
We establish a criterion for a group
with absolutely $\mathfrak{F}$-subnormal
$n$-maximal subgroups to belong to
a subgroup-closed saturated formation $\mathfrak{F}$
containing all nilpotent groups.
Keywords:
finite group, maximal subgroup, subnormal subgroup.
@article{TIMM_2023_29_1_a18,
author = {I. L. Sokhor},
title = {Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {254--258},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a18/}
}
I. L. Sokhor. Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 254-258. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a18/