Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 254-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A subgroup $M$ of a group $G$ is an $n$-maximal subgroups of $G$ if there is a subgroup chain $M=M_n\leq M_{n-1}\leq \ldots \leq M_1\leq M_0=G$ such that $M_{i+1}$ is a maximal subgroup of $M_i$. We establish a criterion for a group with absolutely $\mathfrak{F}$-subnormal $n$-maximal subgroups to belong to a subgroup-closed saturated formation $\mathfrak{F}$ containing all nilpotent groups.
Keywords: finite group, maximal subgroup, subnormal subgroup.
@article{TIMM_2023_29_1_a18,
     author = {I. L. Sokhor},
     title = {Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {254--258},
     year = {2023},
     volume = {29},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a18/}
}
TY  - JOUR
AU  - I. L. Sokhor
TI  - Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 254
EP  - 258
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a18/
LA  - en
ID  - TIMM_2023_29_1_a18
ER  - 
%0 Journal Article
%A I. L. Sokhor
%T Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 254-258
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a18/
%G en
%F TIMM_2023_29_1_a18
I. L. Sokhor. Finite groups with absolutely $\mathfrak{F}$-subnormal maximal subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 254-258. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a18/

[1] Huppert B., “Normalteiler and maximal Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl

[2] Janko Z., “Finite groups with invariant fourth maximal subgroups”, Math. Z., 82 (1963), 82–89 | DOI | MR | Zbl

[3] Mann A., “Finite groups whose $n$-maximal subgroups are subnormal”, Trans. Amer. Math. Soc., 132 (1968), 395–409 | MR | Zbl

[4] Vasil'ev A. F., Melchenko A. G., “Finite groups with absolutely formationally subnormal Sylow subgroups”, Probl. Fiz. Math. Tekh., 4:41 (2019), 44–50 (in Russian) | MR | Zbl

[5] Konovalova M.N., Monakhov V.S., Sokhor I.L., “Finite groups with formational subnormal strictly 2-maximal subgroups”, Comm. Algebra, 50:4 (2022), 1606–1612 | DOI | MR

[6] Kovaleva V.A., Skiba A.N., “Finite solvable groups with all $n$-maximal subgroups $\mathfrak{F}$-subnormal”, J. Group Theory, 17:3 (2014), 273–290 | DOI | MR | Zbl

[7] Kovaleva V.A., Yi X., “Finite biprimary groups with all $3$-maximal subgroups $\mathfrak{U}$-subnormal”, Acta Math. Hung., 146:1 (2015), 47–55 | DOI | MR | Zbl

[8] Huppert B., Endliche Gruppen I, 1967, Springer-Verl., Berlin, 793 pp. | DOI | MR

[9] Burness T.C., Liebeck M.W., Shalev A., “On the length and depth of finite groups”, Proc. London Math. Soc., 119:3 (2019), 1464–1492 | DOI | MR | Zbl

[10] Sokhor I.L., “Continuation of the theory of $E_\mathfrak{F}$-groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021), 268–272 | DOI | MR

[11] Kohler J., “A note on solvable groups”, J. Lond. Math. Soc., 43 (1968), 235–236 | DOI | MR | Zbl

[12] Iwasawa K., “Über die endlichen Gruppen und die Verbände ihrer Untergruppen”, J. Fac. Sci. Imp. Univ. Tokyo. Sect. I., 4 (1941), 171–199 | MR | Zbl

[13] Monakhov V.S., “Schmidt subgroups, their existence and some applications”, Proceedings of Ukrainian Mathematical Congress-2001, Inst. Mat. NAN Ukrainy, Kyiv, 2002, 81-90 (in Russian) | MR | Zbl