Block designs, permutation groups and prime values of polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 233-253

Voir la notice de l'article provenant de la source Math-Net.Ru

A recent construction by Amarra, Devillers and Praeger of block designs with specific parameters and large symmetry groups depends on certain quadratic polynomials, with integer coefficients, taking prime power values. Similarly, a recent construction by Hujdurović, Kutnar, Kuzma, Marušič, Miklavič and Orel of permutation groups with specific intersection densities depends on certain cyclotomic polynomials taking prime values. The Bunyakovsky Conjecture, if true, would imply that each of these polynomials takes infinitely many prime values, giving infinite families of block designs and permutation groups with the required properties. We have found large numbers of prime values of these polynomials, and the numbers found agree very closely with the estimates for them provided by Li's recent modification of the Bateman–Horn Conjecture. While this does not prove that these polynomials take infinitely many prime values, it provides strong evidence for this, and it also adds extra support for the validity of the Bunyakovsky and Bateman–Horn Conjectures.
Keywords: Block design, intersection density, prime number, Bateman–Horn Conjecture, Bunyakovsky Conjecture.
Mots-clés : permutation group, polynomial
@article{TIMM_2023_29_1_a17,
     author = {G. A. Jones and A. K. Zvonkin},
     title = {Block designs, permutation groups and prime values of polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {233--253},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a17/}
}
TY  - JOUR
AU  - G. A. Jones
AU  - A. K. Zvonkin
TI  - Block designs, permutation groups and prime values of polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 233
EP  - 253
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a17/
LA  - en
ID  - TIMM_2023_29_1_a17
ER  - 
%0 Journal Article
%A G. A. Jones
%A A. K. Zvonkin
%T Block designs, permutation groups and prime values of polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 233-253
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a17/
%G en
%F TIMM_2023_29_1_a17
G. A. Jones; A. K. Zvonkin. Block designs, permutation groups and prime values of polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 233-253. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a17/