Mots-clés : permutation group, polynomial
@article{TIMM_2023_29_1_a17,
author = {G. A. Jones and A. K. Zvonkin},
title = {Block designs, permutation groups and prime values of polynomials},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {233--253},
year = {2023},
volume = {29},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a17/}
}
G. A. Jones; A. K. Zvonkin. Block designs, permutation groups and prime values of polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 233-253. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a17/
[1] Aletheia-Zomlefer S.L., Fukshansky L., and Garcia S.R., “The Bateman–Horn conjecture: heuristics, history, and applications”, Expo. Math., 38 (2020), 430–479 ; arXiv: 1807.08899v4 | DOI | MR | Zbl
[2] Amarra C., Devillers A. and Praeger C.E., “Delandsheer–Doyen parameters for block-transitive point-imprimitive block designs”, Designs, Codes and Cryptography, 90 (2022), 2205–2221 ; arXiv: 2009.00282 | DOI | MR | Zbl
[3] Banks W.D., Pappalardi F., and Shparlinski I.E., “On group structures realized by elliptic curves over arbitrary finite fields”, Exp. Math., 21:1 (2012), 11–25 | DOI | MR | Zbl
[4] Bateman P.T. and Horn R.A., “A heuristic asymptotic formula concerning the distribution of prime numbers”, Math. Comp., 16 (1962), 220–228 | DOI | MR
[5] Belabas K., Cohen H., Numerical Algorithms for Number Theory Using Pari/GP, All the programs used in the book may be downloaded via a link given on the page, Mathematical Surveys and Monographs, 254, AMS, 2021 URL: https://www.math.u-bordeaux.fr/~kbelabas/Numerical_Algorithms/ | DOI | MR | Zbl
[6] Borevich Z.I. and Shafarevich I.R., Number theory, Acad. Press, NY, 1966 | MR | Zbl
[7] Bouniakowsky V., “Sur les diviseurs numériques invariables des fonctions rationnelles entières”, Mém. Acad. Sci. St. Péteresbourg, $6^{\rm e}$ série, VI (1857), 305–329
[8] Boxall J. and Gruenewald D., “Heuristics on pairing-friendly abelian varieties”, LMS J. Comput. Math., 18:1 (2015), 419–443 | DOI | MR | Zbl
[9] Bunyakovsky conjecture, Wikipedia [e-resource] URL: https://en.wikipedia.org/wiki/Bunyakovsky_conjecture
[10] Carmichael numbers, Wikipedia [e-resource] URL: https://en.wikipedia.org/wiki/Carmichael_number
[11] Cohen H., High-precision computation of Hardy–Littlewood constants, [e-resource]. Preprint URL: https://oeis.org/A221712/a221712.pdf
[12] Cook J.D., Distribution of prime powers [e-resource], John D. Cook's blog URL: https://www.johndcook.com/blog/2018/09/03/counting-prime-powers
[13] Covanov S. and Thomé E., “Fast integer multiplication using generalized Fermat primes”, Math. Comp., 8 (2019), 1449–1477 | DOI | MR
[14] David C. and Smith E., “A Cohen–Lenstra phenomenon for elliptic curves”, J. London Math. Soc. (2), 89:1 (2014), 24–44 | DOI | MR | Zbl
[15] Delandtsheer A. and Doyen J., “Most block-transitive $t$-designs are point-primitive”, Geom. Dedicata, 29 (1989), 307–310 | DOI | MR | Zbl
[16] Ellis D., Kalai G., and Narayanan B., “On symmetric intersecting families”, European J. Combin., 86 (2020), 103094 | DOI | MR | Zbl
[17] Erdös P., Ko C., and Rado R., “Intersection theorems for systems of finite sets”, Q. J. Math., 12 (1961), 313–320 | DOI | MR | Zbl
[18] Euler L., Letter to Goldbach, 28th October 1752 (letter CXLIX) URL: ; “De numeris primis valde magnis”, Novi Commentarii academiae scientiarum Petropolitanae, 9 (1760), 99–153; Commentat. Arith., 1 (1849), 356–378; Opera Omnia: Ser. 1, 3, 1–45 http://eulerarchive.maa.org/correspondence/letters/OO0877.pdf | MR
[19] Fernández-Alcober G.A., Kwashira R., and Martínez L., “Cyclotomy over products of finite fields and combinatorial applications”, Europ. J. Comb., 31 (2010), 1520–1538 | DOI | MR | Zbl
[20] Hardy G.H. and Littlewood J.E., “Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes”, Acta Math., 114 (1923), 215–273 | MR
[21] Hujdurović A., Kutnar K., Kuzma B., Marušič D., Miklavič Š., and M. Orel, “On intersection density of transitive groups of degree a product of two odd primes”, Finite Fields Appl., 78 (2022), 101975 ; arXiv: 2107.09327 | DOI | MR
[22] Jacobson M.J., Jr. and Williams H.G., “New quadratic polynomials with high densities of prime values”, Math. Comp., 72:241 (2002), 499–519 | DOI | MR
[23] Jones G.A. and Jones J.M., Elementary Number Theory, Springer, NY, 1998 | MR | Zbl
[24] Jones G.A. and Zvonkin A.K., Klein's ten planar dessins of degree 11, and beyond, [e-resource], arXiv: 2104.12015
[25] Jones G.A. and Zvonkin A.K., “Groups of prime degree and the Bateman–Horn Conjecture”, Expo. Math., 2022 | DOI | MR
[26] Kim D., “Nonexistence of perfect 2-error-correcting Lee codes in certain dimensions”, European J. Combin., 63 (2017), 1–5 | DOI | MR
[27] Li W., “A note on the Bateman–Horn conjecture”, J. Number Theory, 208 (2020), 390–399 ; arXiv: 1906.03370 | DOI | MR | Zbl
[28] McEliece R.J., “Irreducible cyclic codes and Gauss sums”, Combinatorics, Part I: Theory of designs, finite geometry and coding theory (Proc. NATO Advanced Study Inst., Breukelen, 1974), Math. Centre Tracts, 55, Math. Centrum, Amsterdam, 1974, 179–196 | MR
[29] Meagher K., Razafimahatratra A.S., and Spiga P., “On triangles in derangement graphs”, J. Combin. Theory, Ser. A, 180 (2021), 105390 ; arXiv: 2009.01086 | DOI | MR | Zbl
[30] Mertens F., “Ein Beitrag zur analytischen Zahlentheorie”, J. reine angew. Math., 78 (1874), 46–62 | MR
[31] The Online Encyclopedia of Integer Sequences URL: https://oeis.org
[32] Rivin I., Some experiments on Bateman–Horn, 2015; arXiv: 1508.07821
[33] RSA numbers, Wikipedia [e-resource] URL: https://en.wikipedia.org/wiki/RSA_numbers
[34] Scholl T., “Isolated elliptic curves and the MOV attack”, J. Math. Cryptol., 11 (2017), 131–146 | DOI | MR | Zbl
[35] Scholl T., “Super-isolated elliptic curves and abelian surfaces in cryptography”, Exp. Math., 28 (2019), 385–397 | DOI | MR | Zbl
[36] Sha M., “Heuristics of the Cocks–Pinch method”, Adv. Math. Commun., 8 (2014), 103–118 | DOI | MR | Zbl
[37] Shanks D. and Lal M., “Bateman's constant reconsidered and the distribution of cubic residues”, Math. Comp., 26:117 (1972), 265–285 | MR | Zbl