Existence and uniqueness theorems for one system of integral equations with two nonlinearities
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 202-218
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a system of integral equations on the positive semiaxis with two monotone nonlinearities. With various particular representations of matrix kernels and nonlinearities, this system arises in many branches of mathematical physics. A constructive existence theorem for a non-negative, non-trivial and bounded solution is proved. We also study the asymptotic behavior of the solution at infinity. Under additional restrictions on the nonlinearities and matrix kernels, a uniqueness theorem for a solution, in a certain class of bounded vector functions, is proved. At the end, specific examples of matrix kernels and nonlinearities are given.
Mots-clés : matrix kernel, convergence, limit relation.
Keywords: nonlinearity, bounded solution, monotonicity
@article{TIMM_2023_29_1_a15,
     author = {Kh. A. Khachatryan and H. S. Petrosyan and M. H. Avetisyan},
     title = {Existence and uniqueness theorems for one system of integral equations with two nonlinearities},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {202--218},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a15/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
AU  - M. H. Avetisyan
TI  - Existence and uniqueness theorems for one system of integral equations with two nonlinearities
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 202
EP  - 218
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a15/
LA  - ru
ID  - TIMM_2023_29_1_a15
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%A M. H. Avetisyan
%T Existence and uniqueness theorems for one system of integral equations with two nonlinearities
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 202-218
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a15/
%G ru
%F TIMM_2023_29_1_a15
Kh. A. Khachatryan; H. S. Petrosyan; M. H. Avetisyan. Existence and uniqueness theorems for one system of integral equations with two nonlinearities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 202-218. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a15/

[1] Gantmakher F.R., Teoriya matrits, Fizmatlit, M., 2010, 560 pp. | MR

[2] Vladimirov V.S., Volovich Ya.I., “O nelineinom uravnenii dinamiki v teorii p-adicheskoi struny”, Teoret. mat. fizika, 138:3 (2004), 355–368 | DOI | MR | Zbl

[3] Vladimirov V.S., “Matematicheskie voprosy teorii nelineinykh psevdodifferentsialnykh uravnenii $p$-adicheskikh strun”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 22:1 (2011), 34–41 | DOI | Zbl

[4] Khachatryan Kh.A., “O razreshimosti nekotorykh nelineinykh granichnykh zadach dlya singulyarnykh integralnykh uravnenii tipa svertki”, Tr. Mosk. mat. obschestva, 81:1 (2020), 3–40 | MR | Zbl

[5] Cercignani C., The Boltzmann equation and its application, Springer, NY, 1988, 455 pp. | DOI | MR

[6] Khachatryan A.Kh., Khachatryan Kh.A., “O nekotorykh voprosakh razreshimosti nelineinogo statsionarnogo uravneniya Boltsmana v ramkakh BGK-modeli”, Tr. Mosk. mat. obschestva, 77:1 (2016), 103–130 | Zbl

[7] Yengibaryan N.B., Khachatryan A.Kh., “On temperature and density jumps in kinetic theory of gases”, Ser. Horizons in World Phys, 243, Nova Sci. Publisher, NY, 2003, 103–117

[8] Khachatryan Kh.A., “O razreshimosti odnoi sistemy nelineinykh integralnykh uravnenii tipa Gammershteina na pryamoi”, Izv. Sarat. un-ta. Nov. ser. Ser. matematika, mekhanika, informatika, 19:2 (2019), 164–181 | DOI | MR | Zbl

[9] Petrosyan A.S., Terdzhyan Ts.E., Khachatryan Kh.A., “Edinstvennost resheniya odnoi sistemy integralnykh uravnenii na poluosi s vypukloi nelineinostyu”, Mat. trudy, 23:2 (2020), 87–203 | DOI

[10] Khachatryan Kh.A., Petrosyan A.S., “O razreshimosti odnoi sistemy singulyarnykh integralnykh uravnenii s vypukloi nelineinostyu na polozhitelnoi polupryamoi”, Izv. vuzov. Matematika, 2021, no. 1, 31–51 | DOI | Zbl

[11] Kolmogorov A.N., Fomin V.S., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1980, 542 pp. | MR

[12] Arabadzhyan L.G., Khachatryan A.S., “Ob odnom klasse integralnykh uravnenii tipa svertki”, Mat. sb., 198:7 (2007), 45–62 | DOI | MR | Zbl

[13] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl