Zeros of Solutions of Third-Order L–A Pairs and Linearizable Ordinary Differential Equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 180-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the form of the zero lines $x=\varphi(t)$ of simultaneous solutions to an L–A pair of general form composed of an evolution equation $\Psi'_t=\Psi''_{xx}/2-G(t, x)\Psi$ and an ordinary differential equation $\Psi'''_{xxx}=K(t,x)\Psi''_{xx}+L(t,x)\Psi'_{x}+M (t,x)\Psi$. It is shown that such lines are given by solutions of a second-order nonlinear ordinary differential equation $\varphi''_{tt}=f(t,\varphi,\varphi'_t)$. Its right-hand side $f(t,\varphi,\varphi'_t)$ is a cubic polynomial in the derivative $\varphi'_t$ with coefficients explicitly determined from the functions $G(t,x)$, $K(t,x )$, $L(t,x)$, and $M(t,x)$. A procedure for integrating this nonlinear equation is described; in this procedure, initial value problems for two simultaneous third-order linear ordinary differential equations with independent variables $x$ and $t$ are solved successively, and then the implicit function theorem is applied. It is established that this nonlinear ordinary differential equation belongs to the linearizable class of equations that are reduced by point changes to the equation $\tilde{\varphi}''_{\tilde{t}\tilde{t}}=0$. These points changes, as shown in S. Lie's classical work, are explicitly written in terms of simultaneous solutions of two homogeneous systems of third-order linear differential equations with different independent variables. The integration procedures for nonlinear ordinary differential equations described in Lie's work and in the present paper are compared. It is noted that the problem of describing the zeros of simultaneous solutions of similar L–A pairs of higher order is of interest. It is conjectured that the solution of this problem can be connected with an integration procedure for linearizable nonlinear ordinary differential equations of order greater than the second.
Keywords: integrability, simultaneous solutions, ordinary differential equations, nonlinearity, point changes, linearizability.
@article{TIMM_2023_29_1_a13,
     author = {B. I. Suleimanov},
     title = {Zeros of {Solutions} of {Third-Order} {L{\textendash}A} {Pairs} and {Linearizable} {Ordinary} {Differential} {Equations}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {180--189},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a13/}
}
TY  - JOUR
AU  - B. I. Suleimanov
TI  - Zeros of Solutions of Third-Order L–A Pairs and Linearizable Ordinary Differential Equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 180
EP  - 189
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a13/
LA  - ru
ID  - TIMM_2023_29_1_a13
ER  - 
%0 Journal Article
%A B. I. Suleimanov
%T Zeros of Solutions of Third-Order L–A Pairs and Linearizable Ordinary Differential Equations
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 180-189
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a13/
%G ru
%F TIMM_2023_29_1_a13
B. I. Suleimanov. Zeros of Solutions of Third-Order L–A Pairs and Linearizable Ordinary Differential Equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 180-189. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a13/

[1] Andreev V.K., Kaptsov O.V., Pukhnachev V.V., Rodionov A.A., Applications of group-theoretical methods in hydrodynamics, Math. and Its Appl., 450, Kluwer, Dordrecht, 1998, 396 pp. | MR | Zbl

[2] Domrin A.V., Shumkin M.A., Suleimanov B.I., “Meromorphy of solutions for a wide class of ordinary differential equations of Painlevé type”, J. Math. Physics, 63 (2022), 023501 | DOI | MR

[3] Kudashev V.R., KdV shock-like waves as invariant solutions of KdV equation symmetries, [e-resource], 1994, arXiv: patt-sol/9404002 | MR

[4] Ligthill M.J., “Viscosity effects in sound waves of finite amplitude”, Surveys in Mechanics, eds. G.K. Batchelor R.M. Davies, Cambridge Univ. Press, Cambridge, 1956, 250–351 | MR

[5] Ilin A.M., Coglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[6] Suleimanov B.I., Kudashev V.R., “Vliyanie maloi dissipatsii na protsessy zarozhdeniya odnomernykh udarnykh voln”, Prikl. matematika i mekhanika, 65:3 (2001), 456–466 | MR | Zbl

[7] Zakharov C.V., Ilin A.M., “Ot slabogo razryva k gradientnoi katastrofe”, Mat. sb., 192:10 (2001), 3–18 | DOI | MR | Zbl

[8] Zakharov S.V., Il'in A.M., “On the influence of small dissipation on the evolution of weak discontinuities”, Func. Diff. Eq., 8:3-4 (2001), 257–271 | MR | Zbl

[9] Zakharov S.V., “Zarozhdenie udarnoi volny v odnoi zadache Koshi dlya uravneniya Byurgersa”, Zhurn. vychislit. matematiki i mat. fiziki, 44:3 (2004), 536–542 | MR | Zbl

[10] Garifullin R.N., Suleimanov B.I., “Ot slabykh razryvov k bezdissipativnym udarnym volnam”, Zhurn. eksperiment. i teoret. fiziki, 137:1 (2010), 149–165

[11] Tresse A., “Sur les invariants diff'erentielles des groupes continus de transformations”, Acta Math., 18:1 (1984), 1–88 | DOI | MR

[12] Tresse A., D'etermination des invariants ponctuels de l'equation diff'erentielle ordinaire du second ordre $y''=\omega(x,y,y') $, S. Hirkei, Lepzig, 1896, 87 pp.

[13] Lie S., “Classifikation und Integration von gewöhnlichen Differentialgleichungen zwischen $x,y$, die eine Gruppe von Transformationen gestatten. III”, Archiv for Matematik og Naturvidenskab, VIII:4 (1883), 371–458

[14] Dmitrieva V.V., “Tochechno-invariantnye klassy obyknovennykh differentsialnykh uravnenii tretego poryadka”, Mat. zametki, 70:2 (2001), 195–200 | DOI | Zbl

[15] Bocharov A.V., Sokolov V.V., Svinolupov S.I., On some equivalence problems for differential equations, Preprint Erwin Schrodinger Institute for Mathematical Physics, preprint no. 54, Vienna, 1993, 12 pp. | MR

[16] Euler N., Wolf T., Leach P.G., Euler M., “Linearizable third-order ordinary differential equations and generalized Sundman transformations: The Case $X'''=0$”, Acta Appl. Math., 76:1 (2003), 89–115 | DOI | MR | Zbl

[17] Suksern S., Naboonmee K., “Linearization of Fifth-Order Ordinary Differential Equations by Generalized Sundman Transformations”, Int. J. Diff. Eq., 2018 (2018), 3048428, 17 pp. | DOI | MR | Zbl