@article{TIMM_2023_29_1_a13,
author = {B. I. Suleimanov},
title = {Zeros of {Solutions} of {Third-Order} {L{\textendash}A} {Pairs} and {Linearizable} {Ordinary} {Differential} {Equations}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {180--189},
year = {2023},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a13/}
}
TY - JOUR AU - B. I. Suleimanov TI - Zeros of Solutions of Third-Order L–A Pairs and Linearizable Ordinary Differential Equations JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 180 EP - 189 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a13/ LA - ru ID - TIMM_2023_29_1_a13 ER -
B. I. Suleimanov. Zeros of Solutions of Third-Order L–A Pairs and Linearizable Ordinary Differential Equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 180-189. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a13/
[1] Andreev V.K., Kaptsov O.V., Pukhnachev V.V., Rodionov A.A., Applications of group-theoretical methods in hydrodynamics, Math. and Its Appl., 450, Kluwer, Dordrecht, 1998, 396 pp. | MR | Zbl
[2] Domrin A.V., Shumkin M.A., Suleimanov B.I., “Meromorphy of solutions for a wide class of ordinary differential equations of Painlevé type”, J. Math. Physics, 63 (2022), 023501 | DOI | MR
[3] Kudashev V.R., KdV shock-like waves as invariant solutions of KdV equation symmetries, [e-resource], 1994, arXiv: patt-sol/9404002 | MR
[4] Ligthill M.J., “Viscosity effects in sound waves of finite amplitude”, Surveys in Mechanics, eds. G.K. Batchelor R.M. Davies, Cambridge Univ. Press, Cambridge, 1956, 250–351 | MR
[5] Ilin A.M., Coglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR
[6] Suleimanov B.I., Kudashev V.R., “Vliyanie maloi dissipatsii na protsessy zarozhdeniya odnomernykh udarnykh voln”, Prikl. matematika i mekhanika, 65:3 (2001), 456–466 | MR | Zbl
[7] Zakharov C.V., Ilin A.M., “Ot slabogo razryva k gradientnoi katastrofe”, Mat. sb., 192:10 (2001), 3–18 | DOI | MR | Zbl
[8] Zakharov S.V., Il'in A.M., “On the influence of small dissipation on the evolution of weak discontinuities”, Func. Diff. Eq., 8:3-4 (2001), 257–271 | MR | Zbl
[9] Zakharov S.V., “Zarozhdenie udarnoi volny v odnoi zadache Koshi dlya uravneniya Byurgersa”, Zhurn. vychislit. matematiki i mat. fiziki, 44:3 (2004), 536–542 | MR | Zbl
[10] Garifullin R.N., Suleimanov B.I., “Ot slabykh razryvov k bezdissipativnym udarnym volnam”, Zhurn. eksperiment. i teoret. fiziki, 137:1 (2010), 149–165
[11] Tresse A., “Sur les invariants diff'erentielles des groupes continus de transformations”, Acta Math., 18:1 (1984), 1–88 | DOI | MR
[12] Tresse A., D'etermination des invariants ponctuels de l'equation diff'erentielle ordinaire du second ordre $y''=\omega(x,y,y') $, S. Hirkei, Lepzig, 1896, 87 pp.
[13] Lie S., “Classifikation und Integration von gewöhnlichen Differentialgleichungen zwischen $x,y$, die eine Gruppe von Transformationen gestatten. III”, Archiv for Matematik og Naturvidenskab, VIII:4 (1883), 371–458
[14] Dmitrieva V.V., “Tochechno-invariantnye klassy obyknovennykh differentsialnykh uravnenii tretego poryadka”, Mat. zametki, 70:2 (2001), 195–200 | DOI | Zbl
[15] Bocharov A.V., Sokolov V.V., Svinolupov S.I., On some equivalence problems for differential equations, Preprint Erwin Schrodinger Institute for Mathematical Physics, preprint no. 54, Vienna, 1993, 12 pp. | MR
[16] Euler N., Wolf T., Leach P.G., Euler M., “Linearizable third-order ordinary differential equations and generalized Sundman transformations: The Case $X'''=0$”, Acta Appl. Math., 76:1 (2003), 89–115 | DOI | MR | Zbl
[17] Suksern S., Naboonmee K., “Linearization of Fifth-Order Ordinary Differential Equations by Generalized Sundman Transformations”, Int. J. Diff. Eq., 2018 (2018), 3048428, 17 pp. | DOI | MR | Zbl