Keywords: basic set of endomorphisms, bipolar classification of groupoid endomorphisms, monotypic endomorphism semigroups.
@article{TIMM_2023_29_1_a10,
author = {A. V. Litavrin},
title = {On an {Element-by-Element} {Description} of the {Monoid} of all {Endomorphisms} of an {Arbitrary} {Groupoid} and {One} {Classification} of {Endomorphisms} of a {Groupoid}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {143--159},
year = {2023},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a10/}
}
TY - JOUR AU - A. V. Litavrin TI - On an Element-by-Element Description of the Monoid of all Endomorphisms of an Arbitrary Groupoid and One Classification of Endomorphisms of a Groupoid JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 143 EP - 159 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a10/ LA - ru ID - TIMM_2023_29_1_a10 ER -
%0 Journal Article %A A. V. Litavrin %T On an Element-by-Element Description of the Monoid of all Endomorphisms of an Arbitrary Groupoid and One Classification of Endomorphisms of a Groupoid %J Trudy Instituta matematiki i mehaniki %D 2023 %P 143-159 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a10/ %G ru %F TIMM_2023_29_1_a10
A. V. Litavrin. On an Element-by-Element Description of the Monoid of all Endomorphisms of an Arbitrary Groupoid and One Classification of Endomorphisms of a Groupoid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 143-159. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a10/
[1] Litavrin A. V., “Endomorphisms of Some Groupoids of Order $k+k^2$”, Bulletin of Irkutsk State University. Series Mathematics, 32 (2020), 64–78 | DOI | MR | Zbl
[2] Litavrin A. V., “On endomorphisms of the additive monoid of subnets of a two-layer neural network”, The Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 111–126 | DOI | MR | Zbl
[3] Levchuk V. M., “Avtomorfizmy unipotentnykh podgrupp grupp Shevalle”, Algebra i logika, 29:3 (1990), 211–224 | MR | Zbl
[4] Ilinykh A. P., “Klassifikatsiya konechnykh gruppoidov s 2 tranzitivnoi gruppoi avtomorfizmov”, Mat. sb., 185:6 (1994), 51–78 | DOI | Zbl
[5] Ilinykh A. P., “Gruppoidy poryadka $q(q \pm 1)/2$, $q = 2^r$, imeyuschie gruppu avtomorfizmov, izomorfnuyu $SL(2,q)$”, Sib. mat. zhurn., 36:6 (1995), 1336–1341 | DOI | MR | Zbl
[6] Timofeenko G. V., Glukhov M. M., “Gruppa avtomorfizmov konechno-opredelennykh kvazigrupp”, Mat. zametki, 37:5 (1985), 617–626 | MR | Zbl
[7] Tabarov A. Kh., “Gomomorfizmy i endomorfizmy lineinykh i alineinykh kvazigrupp”, Diskret. matematika, 19:2 (2007), 67–73 | DOI | MR | Zbl
[8] Zhuchok Yu. V., “Polugruppy endomorfizmov nekotorykh svobodnykh proizvedenii”, Fundament. i prikl. matematika, 17:3 (2012), 51–60 | Zbl
[9] Bunina E. I., Sosov K., “Endomorfizmy polugrupp neotritsatelnykh obratimykh matrits poryadka dva nad kommutativnymi uporyadochennymi koltsami”, Fundament. i prikl. matematika, 23:4 (2021), 39–53 | MR
[10] Nemiro V. V., “Endomorfizmy polugrupp obratimykh neotritsatelnykh matrits nad uporyadochennymi assotsiativnymi koltsami”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2020, no. 5, 3–8 | MR | Zbl