On an Element-by-Element Description of the Monoid of all Endomorphisms of an Arbitrary Groupoid and One Classification of Endomorphisms of a Groupoid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 143-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of element-by-element description of the monoid of all endomorphisms of an arbitrary groupoid is considered. It is established that this monoid is decomposed into a union of pairwise disjoint classes of endomorphisms; these classes are called basic sets of endomorphisms. Such sets of endomorphisms of a groupoid $G$ are parameterized by mappings $\gamma: G\to \{1,2\}$, which in this paper are called bipolar types (hereinafter, simply types). If some endomorphism belongs to a basic set of type $\gamma$, then we say that it has type $\gamma$. Thus, we obtain a classification of all endomorphisms of a fixed groupoid (a bipolar classification of endomorphisms). A connection between the types of endomorphisms of two isomorphic groupoids is revealed. The basic set of endomorphisms need not be closed under composition. Groupoids are constructed in which some basic sets are closed. For each basic set, an endomorphism semigroup contained in this basic set is constructed. These semigroups in some cases degenerate into empty sets. Examples of groupoids are given in which the constructed endomorphism semigroups are nonempty. The constructed semigroups can be used to study the problem of element-by-element description of the monoid of all endomorphisms and to study the structure of the monoid of all endomorphisms.
Mots-clés : groupoid endomorphism, groupoid automorphism, groupoid
Keywords: basic set of endomorphisms, bipolar classification of groupoid endomorphisms, monotypic endomorphism semigroups.
@article{TIMM_2023_29_1_a10,
     author = {A. V. Litavrin},
     title = {On an {Element-by-Element} {Description} of the {Monoid} of all {Endomorphisms} of an {Arbitrary} {Groupoid} and {One} {Classification} of {Endomorphisms} of a {Groupoid}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {143--159},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a10/}
}
TY  - JOUR
AU  - A. V. Litavrin
TI  - On an Element-by-Element Description of the Monoid of all Endomorphisms of an Arbitrary Groupoid and One Classification of Endomorphisms of a Groupoid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 143
EP  - 159
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a10/
LA  - ru
ID  - TIMM_2023_29_1_a10
ER  - 
%0 Journal Article
%A A. V. Litavrin
%T On an Element-by-Element Description of the Monoid of all Endomorphisms of an Arbitrary Groupoid and One Classification of Endomorphisms of a Groupoid
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 143-159
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a10/
%G ru
%F TIMM_2023_29_1_a10
A. V. Litavrin. On an Element-by-Element Description of the Monoid of all Endomorphisms of an Arbitrary Groupoid and One Classification of Endomorphisms of a Groupoid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 143-159. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a10/

[1] Litavrin A. V., “Endomorphisms of Some Groupoids of Order $k+k^2$”, Bulletin of Irkutsk State University. Series Mathematics, 32 (2020), 64–78 | DOI | MR | Zbl

[2] Litavrin A. V., “On endomorphisms of the additive monoid of subnets of a two-layer neural network”, The Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 111–126 | DOI | MR | Zbl

[3] Levchuk V. M., “Avtomorfizmy unipotentnykh podgrupp grupp Shevalle”, Algebra i logika, 29:3 (1990), 211–224 | MR | Zbl

[4] Ilinykh A. P., “Klassifikatsiya konechnykh gruppoidov s 2 tranzitivnoi gruppoi avtomorfizmov”, Mat. sb., 185:6 (1994), 51–78 | DOI | Zbl

[5] Ilinykh A. P., “Gruppoidy poryadka $q(q \pm 1)/2$, $q = 2^r$, imeyuschie gruppu avtomorfizmov, izomorfnuyu $SL(2,q)$”, Sib. mat. zhurn., 36:6 (1995), 1336–1341 | DOI | MR | Zbl

[6] Timofeenko G. V., Glukhov M. M., “Gruppa avtomorfizmov konechno-opredelennykh kvazigrupp”, Mat. zametki, 37:5 (1985), 617–626 | MR | Zbl

[7] Tabarov A. Kh., “Gomomorfizmy i endomorfizmy lineinykh i alineinykh kvazigrupp”, Diskret. matematika, 19:2 (2007), 67–73 | DOI | MR | Zbl

[8] Zhuchok Yu. V., “Polugruppy endomorfizmov nekotorykh svobodnykh proizvedenii”, Fundament. i prikl. matematika, 17:3 (2012), 51–60 | Zbl

[9] Bunina E. I., Sosov K., “Endomorfizmy polugrupp neotritsatelnykh obratimykh matrits poryadka dva nad kommutativnymi uporyadochennymi koltsami”, Fundament. i prikl. matematika, 23:4 (2021), 39–53 | MR

[10] Nemiro V. V., “Endomorfizmy polugrupp obratimykh neotritsatelnykh matrits nad uporyadochennymi assotsiativnymi koltsami”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2020, no. 5, 3–8 | MR | Zbl