Keywords: threshold graph, bipartite-threshold graph, Ferrers diagram.
@article{TIMM_2023_29_1_a1,
author = {V. A. Baranskii and T. A. Senchonok},
title = {Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {24--35},
year = {2023},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a1/}
}
TY - JOUR AU - V. A. Baranskii AU - T. A. Senchonok TI - Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 24 EP - 35 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a1/ LA - ru ID - TIMM_2023_29_1_a1 ER -
V. A. Baranskii; T. A. Senchonok. Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 24-35. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a1/
[1] Asanov M.O., Baranskii V.A., Rasin V.V., Diskretnaya matematika: grafy, matroidy, algoritmy, 2-e izd., ispr. i dop., Lan, SPb., 2010, 368 pp.
[2] Andrews G.E., The theory of partitions, Cambridge University Press, Cambridge, 1976, 255 pp. | MR
[3] Mahadev N.V.R., Peled U.N., Threshold graphs and related topics, Ser. Annals of Discr. Math., 56, North-Holland Publishing Co., Amsterdam, 1995, 542 pp. | MR
[4] Baranskii V.A., Koroleva T.A., Senchonok T.A., “O reshetke razbienii vsekh naturalnykh chisel”, Sib. elektron. mat. izv., 13 (2016), 744–753 | DOI | MR | Zbl
[5] Baranskii V.A., Senchonok T.A., “O kratchaishikh posledovatelnostyakh elementarnykh preobrazovanii v reshetke razbienii naturalnykh chisel”, Sib. elektron. mat. izv., 15 (2018), 844–852 | DOI | Zbl
[6] Havel V., “A remark on the existence of finite graphs (in Czech)”, Câsopic Pêst. Mat., 80:4 (1955), 477–481 | MR