Voir la notice du chapitre de livre
@article{TIMM_2022_28_4_a9,
author = {N. A. Ilyasov},
title = {Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone {Fourier} coefficients},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {103--120},
year = {2022},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a9/}
}
TY - JOUR AU - N. A. Ilyasov TI - Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone Fourier coefficients JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 103 EP - 120 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a9/ LA - ru ID - TIMM_2022_28_4_a9 ER -
%0 Journal Article %A N. A. Ilyasov %T Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone Fourier coefficients %J Trudy Instituta matematiki i mehaniki %D 2022 %P 103-120 %V 28 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a9/ %G ru %F TIMM_2022_28_4_a9
N. A. Ilyasov. Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone Fourier coefficients. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 103-120. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a9/
[1] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Dokl. AN SSSR, 65:2 (1949), 135–137
[2] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 15:3 (1951), 219–242
[3] Timan A.F., Timan M.F., “Obobschennyi modul nepreryvnosti i nailuchshee priblizhenie v srednem”, Dokl. AN SSSR, 71:1 (1950), 17–20
[4] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp.
[5] Kokilashvili V.M., “O strukturnykh i konstruktivnykh kharakteristikakh odnogo klassa periodicheskikh funktsii”, Soobscheniya AN Gruzinskoi SSR, XVIII:1 (1966), 3–8
[6] Kokilashvili V.M., “O priblizhenii periodicheskikh funktsii”, Tr. Tbilis. mat. in-ta, 34 (1968), 51–81
[7] Aljančić S., “On the integral module of continuity in $L_p$ ($1
\infty$) of Fourier series with monotone coefficients”, Proc. Amer. Math. Soc., 17:2 (1966), 287–294 | MR[8] Timan M.F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_p$ ($1\le p\le \infty$)”, Mat. sb., 46(88):1 (1958), 125–132
[9] Timan M.F., “O teoreme Dzheksona v prostranstvakh $L_p$”, Ukr. mat. zhurn., 18:1 (1966), 134–137 | MR
[10] Besov O.V., “O nekotorykh usloviyakh prinadlezhnosti k $L_p$ proizvodnykh periodicheskikh funktsii”, Nauch. dokl. vyssh. shkoly. Fiz-mat. nauki, 1 (1959), 13–17
[11] Ilyasov N.A., “O ravnosilnosti nekotorykh neravenstv teorii priblizhenii periodicheskikh funktsii v prostranstvakh $L_p(\mathbb T$), $1 p \infty$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:2 (2018), 93–106 | DOI | MR
[12] Bari N.K., Stechkin S.B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. ob -va, 5 (1956), 483–522
[13] Ilyasov N.A., “Pryamaya teorema v raznykh metrikakh teorii priblizhenii periodicheskikh funktsii s monotonnymi koeffitsientami Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:3 (2017), 144–158 | DOI | MR
[14] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp.
[15] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp. ; т. 2, 538 с. | MR
[16] Riesz M., “Sur les fonctions conjuguees”, Math. Zeit., 27:2 (1927), 218–244 | MR
[17] Konyushkov A.A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Mat. sb., 44(86):1 (1958), 53–84 | MR
[18] Konyushkov A.A., “O nailuchshikh priblizheniyakh pri preobrazovanii koeffitsientov Fure metodom srednikh arifmeticheskikh i o ryadakh Fure s neotritsatelnymi koeffitsientami”, Sib. mat. zhurn., 3:1 (1962), 56–78 | MR
[19] Quade E.S., “Trigonometric approximation in the mean”, Duke Math. J., 3:3 (1937), 529–543 | DOI | MR
[20] Zhuk V.V., Approksimatsiya periodicheskikh funktsii, Izd-vo Leningr. un-ta, L., 1982, 368 pp.
[21] Ilyasov N.A., “Teoremy vlozheniya dlya nekotorykh klassov periodicheskikh funktsii v $L_p$, $1\le p\le \infty$”, Dokl. AN SSSR, 276:6 (1984), 1301–1304 | MR
[22] Ilyasov N.A., Teoremy vlozheniya dlya strukturnykh i konstruktivnykh kharakteristik funktsii, dis. ...kand. fiz.-mat. nauk, Bakin. gos. un-t, Baku, 1987, 150 pp.
[23] Ilyasov N.A., “K neravenstvam mezhdu nailuchshimi priblizheniyami i modulyami gladkosti raznykh poryadkov periodicheskikh funktsii v $L_p$, $1\le p\le \infty$”, Singulyarnye integralnye operatory, temat. sb. nauch. tr., Iz-vo Bakin. gos. un-ta, Baku, 1991, 40–52