Order equalities in the spaces $L_p(\mathbb T), 1$ $p$ $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone Fourier coefficients
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 103-120
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Denote by $M_p^{(r)}(\mathbb T)$ the class of all functions $f\in L_p(\mathbb T)$ whose Fourier coefficients satisfy the conditions: $a_0(f)=0$, $0$, and $0$ $(n\uparrow \infty)$, where $1$, $r\in \mathbb N$, and $\mathbb T=(-\pi,\pi]$. We establish order equalities in the class $M_p^{(r)}(\mathbb T)$ between the best approximations $E_{n-1}(f^{(r)})_p$ by trigonometric polynomials of order $n-1$ and the $k$th-order moduli of smoothness $\omega_k(f^{(r)};\pi/n)_p$ of $r$th-order derivatives $f^{(r)}$, on the one hand, and various expressions containing elements of the sequences $\{E_{\nu-1}(f^{(r)})_p\}_{\nu=1}^{\infty}$ and $\{\omega_l(f;\pi/\nu)_p\}_{\nu=1}^{\infty}$, where $l,k\in \mathbb N$ and $l>r$, on the other hand. The main results obtained in the present paper can be briefly described as follows. A necessary and sufficient condition for a function $f$ from $M_p^{(r)}(\mathbb T)$ to lie in the class $L_p^{(r)}(\mathbb T)$ (this class consists of all functions $f\in L_p(\mathbb T)$ with absolutely continuous $(r-1)$th derivatives $f^{(r-1)}$ and $f^{(r)}\in L_p(\mathbb T)$; here $f^{(0)}\equiv f$ and $L_p^{(0)}(\mathbb T)\equiv L_p(\mathbb T)$) is that one of the following equivalent conditions is satisfied: $E(f;p;r)\!:=\!\big(\sum_{n=1}^{\infty}n^{pr-1}\!E_{n-1}^{p}(f)_p\big)^{1/p}\infty$ $\Leftrightarrow$ $\Omega(f;p;l;r)\!:=\big(\sum_{n=1}^{\infty}n^{pr-1}\omega_{l}^{p}(f;\pi/n)_p\big)^{1/p}\infty~\Leftrightarrow$ $\sigma(f;p;r):=\big(\sum_{n=1}^{\infty}n^{pr+p-2}(a_n(f)+b_n(f))^p\big)^{1/p}\infty$. Moreover, the following order equalities hold: $(a)\ E(f;p;r)\asymp \|f^{(r)}\|_p \asymp \sigma(f;p;r) \asymp\Omega(f;p;l;r)$; $(b)$ $E_{n-1}(f^{(r)})_p\asymp n^r E_{n-1}(f)_p+\big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}E_{\nu-1}^{p}(f)_p\big)^{1/p},\ n\in \mathbb N$; $(c)$ $\omega_k(f^{(r)};\pi/n)_p\asymp n^{-k}\big(\sum_{\nu=1}^{n}\nu^{p(k+r)-1}E_{\nu-1}^{p}(f)_p\big)^{1/p}+ \big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}E_{\nu-1}^{p}(f)_p\big)^{1/p},\ n\in \mathbb N$; $(d)$ $E_{n-1}(f^{(r)})_p+n^r\omega_l(f;\pi/n)_p\asymp \big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1} \omega_l^{p}(f;\pi/\nu)_p\big)^{1/p}\asymp \asymp\omega_k(f^{(r)};\pi/n)_p+n^r\omega_l(f;\pi/n)_p,\ n\in \mathbb N,\ l$; $(e)$ $n^{-(l-r)}\big(\sum_{\nu=1}^{n}\nu^{p(l-r)-1}E_{\nu-1}^{p}(f^{(r)})_p\big)^{1/p}\asymp \big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}\omega_l^{p}(f;\pi/\nu)_p\big)^{1/p}\asymp \asymp n^{-(l-r)}\big(\sum_{\nu=1}^{n}\nu^{p(l-r)-1}\omega_k^p (f^{(r)};\pi/\nu)_p\big)^{1/p},\ n\in \mathbb N,\ l$; $(f)$ $\omega_k(f^{(r)};\pi/n)_p \asymp \big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}\omega_l^{p}(f;\pi/\nu)_p\big)^{1/p},\ n\in \mathbb N,\ l=k+r$; $(g)$ $\omega_k(f^{(r)};\pi/n)_p \asymp n^{-k}\big(\sum_{\nu=1}^{n}\nu^{p(k+r)-1}\omega_l^{p}(f;\pi/\nu)_p\big)^{1/p}+ \big(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}\omega_l^{p}(f;\pi/\nu)_p\big)^{1/p}$, $n\in \mathbb N$, $l>k+r$. In the general case, one cannot drop the term $n^r\omega_l(f;\pi/n)_p$ in item $(d)$ either in the lower estimate on the left-hand side (for $l>r$) or in the upper estimate on the right-hand side (for $r$). However, if $\{ E_{n-1}(f)_p\}_{n=1}^{\infty}\in B_l^{(p)}$ $(\Rightarrow \{E_{n-1}(f^{(r)})_p\}_{n=1}^{\infty}\in B_{l-r}^{(p)})$ or $\{\omega_l(f;\pi/n)_p\}_{n=1}^{\infty}\in B_l^{(p)}$ $(\Rightarrow \{ \omega_k(f^{(r)};\pi/n)_p\}_{n=1}^{\infty}\in B_{l-r}^{(p)})$, where $B_l^{(p)}$ is the class of all sequences $\{\varphi_n\}_{n=1}^{\infty}$ $(0\varphi_n\downarrow 0$ as $n\uparrow \infty$) satisfying the Bari $(B_l^{(p)})$-condition: $n^{-l}\big(\sum_{\nu=1}^n \nu^{pl-1}\varphi_{\nu}^p\big)^{1/p}=\mathcal O(\varphi_n)$, $n\in\mathbb N$, which is equivalent to the Stechkin $(S_l)$-condition, then $$ E_{n-1}(f^{(r)})_p\asymp \bigg(\sum_{\nu=n+1}^{\infty}\nu^{pr-1}\omega_l^p\Big(f;\frac{\pi}{\nu}\Big)_p\bigg)^{1/p}\asymp \omega_k\Big(f^{(r)};\frac{\pi}{n}\Big)_p,\quad n\in \mathbb N. $$
Keywords: best approximation, modulus of smoothness, direct and inverse theorems with derivatives of the theory of approximation of periodic functions, trigonometric Fourier series with monotone coefficients, order equalities.
@article{TIMM_2022_28_4_a9,
     author = {N. A. Ilyasov},
     title = {Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone {Fourier} coefficients},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {103--120},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a9/}
}
TY  - JOUR
AU  - N. A. Ilyasov
TI  - Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone Fourier coefficients
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 103
EP  - 120
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a9/
LA  - ru
ID  - TIMM_2022_28_4_a9
ER  - 
%0 Journal Article
%A N. A. Ilyasov
%T Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone Fourier coefficients
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 103-120
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a9/
%G ru
%F TIMM_2022_28_4_a9
N. A. Ilyasov. Order equalities in the spaces $L_p(\mathbb T), 1$ < $p$ < $\infty$, for best approximations and moduli of smoothness of derivatives of periodic functions with monotone Fourier coefficients. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 103-120. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a9/

[1] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Dokl. AN SSSR, 65:2 (1949), 135–137

[2] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 15:3 (1951), 219–242

[3] Timan A.F., Timan M.F., “Obobschennyi modul nepreryvnosti i nailuchshee priblizhenie v srednem”, Dokl. AN SSSR, 71:1 (1950), 17–20

[4] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp.

[5] Kokilashvili V.M., “O strukturnykh i konstruktivnykh kharakteristikakh odnogo klassa periodicheskikh funktsii”, Soobscheniya AN Gruzinskoi SSR, XVIII:1 (1966), 3–8

[6] Kokilashvili V.M., “O priblizhenii periodicheskikh funktsii”, Tr. Tbilis. mat. in-ta, 34 (1968), 51–81

[7] Aljančić S., “On the integral module of continuity in $L_p$ ($1

\infty$) of Fourier series with monotone coefficients”, Proc. Amer. Math. Soc., 17:2 (1966), 287–294 | MR

[8] Timan M.F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_p$ ($1\le p\le \infty$)”, Mat. sb., 46(88):1 (1958), 125–132

[9] Timan M.F., “O teoreme Dzheksona v prostranstvakh $L_p$”, Ukr. mat. zhurn., 18:1 (1966), 134–137 | MR

[10] Besov O.V., “O nekotorykh usloviyakh prinadlezhnosti k $L_p$ proizvodnykh periodicheskikh funktsii”, Nauch. dokl. vyssh. shkoly. Fiz-mat. nauki, 1 (1959), 13–17

[11] Ilyasov N.A., “O ravnosilnosti nekotorykh neravenstv teorii priblizhenii periodicheskikh funktsii v prostranstvakh $L_p(\mathbb T$), $1 p \infty$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:2 (2018), 93–106 | DOI | MR

[12] Bari N.K., Stechkin S.B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. ob -va, 5 (1956), 483–522

[13] Ilyasov N.A., “Pryamaya teorema v raznykh metrikakh teorii priblizhenii periodicheskikh funktsii s monotonnymi koeffitsientami Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:3 (2017), 144–158 | DOI | MR

[14] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp.

[15] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp. ; т. 2, 538 с. | MR

[16] Riesz M., “Sur les fonctions conjuguees”, Math. Zeit., 27:2 (1927), 218–244 | MR

[17] Konyushkov A.A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Mat. sb., 44(86):1 (1958), 53–84 | MR

[18] Konyushkov A.A., “O nailuchshikh priblizheniyakh pri preobrazovanii koeffitsientov Fure metodom srednikh arifmeticheskikh i o ryadakh Fure s neotritsatelnymi koeffitsientami”, Sib. mat. zhurn., 3:1 (1962), 56–78 | MR

[19] Quade E.S., “Trigonometric approximation in the mean”, Duke Math. J., 3:3 (1937), 529–543 | DOI | MR

[20] Zhuk V.V., Approksimatsiya periodicheskikh funktsii, Izd-vo Leningr. un-ta, L., 1982, 368 pp.

[21] Ilyasov N.A., “Teoremy vlozheniya dlya nekotorykh klassov periodicheskikh funktsii v $L_p$, $1\le p\le \infty$”, Dokl. AN SSSR, 276:6 (1984), 1301–1304 | MR

[22] Ilyasov N.A., Teoremy vlozheniya dlya strukturnykh i konstruktivnykh kharakteristik funktsii, dis. ...kand. fiz.-mat. nauk, Bakin. gos. un-t, Baku, 1987, 150 pp.

[23] Ilyasov N.A., “K neravenstvam mezhdu nailuchshimi priblizheniyami i modulyami gladkosti raznykh poryadkov periodicheskikh funktsii v $L_p$, $1\le p\le \infty$”, Singulyarnye integralnye operatory, temat. sb. nauch. tr., Iz-vo Bakin. gos. un-ta, Baku, 1991, 40–52