On Almost Universal Double Fourier Series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 91-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The first examples of universal trigonometric series in the class of measurable functions were constructed by D. E. Men'shov. As follows from Kolmogorov's theorem (the Fourier series of each integrable function in the trigonometric system converges in measure), there is no integrable function whose Fourier series in the trigonometric system is universal in the class of all measurable functions. The author has constructed a function $U\in L^1(\mathbb{T})$, $\mathbb{T}=[-\pi,\pi)$, such that, after an appropriate choice of the signs $\{\delta_{k}=\pm1\}_{k=-\infty}^{\infty}$ for its Fourier coefficients, the series $\sum_{k=0}^{\infty}\delta_{k}\big(a_{k}(U)\cos kx+b_{k}(U)\sin kx\big)$ is universal in the class of all measurable functions. The first examples of universal functions were constructed by G. Birkhoff in the framework of complex analysis, where entire functions were represented in any circle by uniformly convergent shifts of the universal function and by Yu. Martsinkevich in the framework of real analysis, where any measurable function was represented as an almost everywhere limit of some sequence of difference relations of the universal function. In this paper, we construct an integrable function $u(x,y)$ of two variables such that, after an appropriate choice of the signs $\{\delta_{k,s}=\pm1\}_{k,s=-\infty}^{\infty}$ for its Fourier coefficients $\widehat{u}_{k,s}$, the series $\sum_{k,s=-\infty}^{\infty}\delta_{k,s}{\widehat{u}}_{k,s}e^{i(kx+sy)}$ in the double trigonometric system $\{e^{ikx} e^{isy}\}_{k,s=-\infty}^{\infty}$ is universal in the class $L^{p}(\mathbb{T}^{2})$, $p\in(0,1)$, and, hence, in the class of all measurable functions. More precisely, it is established that both rectangular partial sums $S_{n,m}(x,y)=\sum_{|k|\leq n}\sum_{|s|\leq m}\delta_{k,s}{\widehat{u}}_{k,s}e^{i(kx+sy)}$ and spherical partial sums $S_{R}(x,y)=\sum_{k^{2}+s^{2}\leq R^{2}}\delta_{k,s}{\widehat{u}}_{k,s}e^{i(kx+sy)}$ of the series $\sum_{k,s=-\infty}^{\infty}\delta_{k,s}{\widehat{u}}_{k,s}e^{i(kx+sy)}$ are dense in $L^{p}(\mathbb{T}^{2})$. Recently S. V. Konyagin has proved that there is no function $u\in L^{1}(\mathbb{T}^{d})$, $d\geq2$, such that the rectangular partial sums of its multiple trigonometric Fourier series are dense in $L^{p}(\mathbb{T}^{2})$, $p\in(0,1)$. Therefore, the author's result formulated here is, in a sense, final.
Keywords: universal function, universal series, multiple Fourier series in a trigonometric system.
@article{TIMM_2022_28_4_a8,
     author = {M. G. Grigoryan},
     title = {On {Almost} {Universal} {Double} {Fourier} {Series}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {91--102},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a8/}
}
TY  - JOUR
AU  - M. G. Grigoryan
TI  - On Almost Universal Double Fourier Series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 91
EP  - 102
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a8/
LA  - ru
ID  - TIMM_2022_28_4_a8
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%T On Almost Universal Double Fourier Series
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 91-102
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a8/
%G ru
%F TIMM_2022_28_4_a8
M. G. Grigoryan. On Almost Universal Double Fourier Series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 91-102. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a8/

[1] Birkhoff G. D., “Démonstration d'un théoréme élémentaire sur les fonctions entiéres”, C. R. Acad. Sci. Paris, 189 (1929), 473–475

[2] Marcinkiewicz J., “Sur les nombres derives”, Fund. Math., 24 (1935), 305–308 | DOI

[3] MacLane G.R., “Sequences of derivatives and normal families”, J. Anal. Math., 2:1 (1952), 72–87 | DOI | MR

[4] Krotov V.G., “O gladkosti universalnykh funktsii Martsinkevicha i universalnykh trigonometricheskikh ryadakh”, Izv. vuzov. Matematika, 35:8 (1991), 26–31 | MR

[5] Grosse-Erdmann K.G., “Holomorphe Monster und Universelle Funktionen”, Mitt. Math., Semin. G, 176 (1987), 1–84 | MR

[6] Luh W., “Universal approximation properties of overconvergent power series on open sets”, Analysis, 6:2–3 (1986), 191–207 | DOI | MR

[7] Muller J., “Continuous functions with universaliy divergent Fourier series on small subsets of the circle”, C.R. Math. Acad. Sci. Paris, 348:21–22 (2010), 1155–1158 | DOI | MR

[8] Bayart F., Grosse-Erdmann K.-G., Nestoridis V., Papadimitropoulos C., “Abstract theory of universal series and applications”, Proc. Lond. Math. Soc., 96:2 (2008), 417–463 | DOI | MR

[9] Menshov D.E., “O chastichnykh summakh trigonometricheskikh ryadov”, Mat. cb., 20(62):2 (1947), 197–238

[10] Talalyan A.A., “O skhodimosti pochti vsyudu podposledovatelnostei chastnykh summ obschikh ortogonalnykh ryadov”, Izv. AN Arm. SSR. Ser. fiz.-mat. nauk, 10:3 (1957), 17–34 | MR

[11] Kolmogorov A., “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fund. Math., 7 (1925), 24–29 | DOI

[12] Grigoryan M.G., “Functions, universal with respect to the classical systems”, Adv. Oper. Theory, 5:4 (2020), 1414–1433 | DOI | MR

[13] Grigoryan M.G., Galoyan L.N., “Funktsii, universalnye otnositelno trigonometricheskoi sistemy”, Izv. RAN. Ser. matematicheskaya, 85:2 (2021), 73–94 | DOI | MR

[14] Grigoryan M.G., “Ob universalnykh ryadakh Fure”, Mat. zametki, 108:2 (2020), 296–299 | DOI

[15] Kashin B.S., “Ob odnoi polnoi ortonormirovannoi sisteme”, Mat. cb., 99(141):3 (1976), 356–365 | MR

[16] Grigoryan M.G. , Sargsyan A.A., “On the universal function for the class $L^{p}[0,1]$, $p\in(0,1)$”, J. Func. Anal., 270:8 (2016), 3111–3133 | DOI | MR

[17] Grigoryan M.G., “O suschestvovanii i strukture universalnykh funktsii”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 496 (2021), 30–33 | DOI

[18] Grigoryan M.G., “On the universal and strong $(L^1,L^\infty)$-property related to Fourier-Walsh series”, Banach J. Math. Anal., 11:3 (2017), 698–712 | DOI | MR

[19] Grigoryan M.G., Galoyan L.N., “On the universal functions”, J. Approx. Theory, 225:191 (2018), 191–208 | DOI | MR

[20] Grigoryan M.G., “Funktsii s universalnymi ryadami Fure - Uolsha”, Mat. cb., 211:6 (2020), 107–131 | DOI | MR

[21] Getsadze R.D, “O raskhodimosti po mere kratnykh ryadov Fure”, Soobsch. AN GSSR, 122:2 (1986), 269–271 | MR

[22] Konyagin S.V., “O raskhodimosti po mere kratnykh ryadov Fure”, Mat. zametki, 44:2 (1988), 196–201 | MR

[23] Konyagin S.V., “O skhodimosti podposledovatelnosti chastnykh summ trigonometricheskogo ryada Fure po Pringskheimu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:4 (2022), 121–127 | DOI