Generalized absolute convergence of Fourier series with respect to multiplicative systems of functions of generalized bounded fluctuation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 78-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The series of one-dimensional and two-dimensional Fourier coefficients with respect to multiplicative systems $\chi$ (with a bounded generating sequence ${\mathbf P}=\{p_i\}^\infty_{i=1}$) with weights satisfying Gogoladze–Meskhia type conditions are studied. Sufficient conditions for the convergence of such series are established for functions from different classes of generalized bounded fluctuation.
Keywords: absolute convergence, multiplicative system, double series, generalized bounded fluctuation.
@article{TIMM_2022_28_4_a7,
     author = {S. S. Volosivets and A. N. Mingachev},
     title = {Generalized absolute convergence of {Fourier} series with respect to multiplicative systems of functions of generalized bounded fluctuation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {78--90},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a7/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - A. N. Mingachev
TI  - Generalized absolute convergence of Fourier series with respect to multiplicative systems of functions of generalized bounded fluctuation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 78
EP  - 90
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a7/
LA  - ru
ID  - TIMM_2022_28_4_a7
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A A. N. Mingachev
%T Generalized absolute convergence of Fourier series with respect to multiplicative systems of functions of generalized bounded fluctuation
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 78-90
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a7/
%G ru
%F TIMM_2022_28_4_a7
S. S. Volosivets; A. N. Mingachev. Generalized absolute convergence of Fourier series with respect to multiplicative systems of functions of generalized bounded fluctuation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 78-90. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a7/

[1] Zygmund A., “Remarque sur la convergence absolute des séries de Fourier”, J. London Math. Soc., 3:1 (1928), 194–196 | DOI | MR

[2] Salem R., “On a theorem of Zygmund”, Duke Math. J., 10:1 (1943), 23–31 | DOI | MR

[3] Izumi M., Izumi S., “On absolute convergence of Fourier series”, Ark. Mat., 7:12 (1967), 177–184 | DOI | MR

[4] Móricz F., “Absolute convergence of Walsh-Fourier series and related results”, Anal. Math., 36:4 (2010), 273–286 | DOI | MR

[5] Schramm M., Waterman D., “Absolute convergence of Fourier series of functions of class $\Lambda BV^{(p)}$ and $\phi\Lambda BV$”, Acta Math. Acad. Sci. Hung., 40:3–4 (1982), 273–276 | DOI | MR

[6] Bochkarev S.V., “O probleme Zigmunda”, Izv. AN SSSR. Cer. matematicheskaya, 37:3, 630–638

[7] Golubov B.I., Volosivets S.S., “Generalized absolute convergence of single and double Fourier series with respect to multiplicative systems”, Anal. Math., 38:2 (2012), 105–122 | DOI | MR

[8] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987, 344 pp. | MR

[9] Krasnoselskii M.A., Rutitskii Ya.B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958, 272 pp. | MR

[10] Ghodadra B.L., “Applications of Hölder's and Jensen's inequalities in studying the $\beta$-absolute convergence of Vilenkin - Fourier series”, Math. Ineq. Appl., 17:2 (2014), 749–760 | MR

[11] Onneweer C.W., Waterman D., “Uniform convergence of Fourier series on groups. I”, Michigan Math. J., 18:3 (1971), 265–273 | DOI | MR

[12] Gogoladze L., Meskhia R., “On the absolute convergence of trigonometric Fourier series”, Proc. Razmadze Math. Inst., 141 (2006), 29–40 | MR

[13] Ghodadra B.L., “Absolute convergence of multiple Fourier series of functions of $\phi(\Lambda^1,\dots, \Lambda^N)$-bounded variation”, São Paulo J. Math. Sci., 11:1 (2017), 94–124 | DOI | MR

[14] Darji K.N., Vyas R.G., “On weighted $\beta$-absolute convergence of double Fourier series”, J. Classical Anal., 12:1 (2021), 1–16 | MR

[15] Móricz F., Veres A., “Absolute convergence of multiple Fourier series revisited”, Anal. Math., 34:2 (2008), 145–162 | DOI | MR

[16] Skhirtladze I.A., “Ob absolyutnoi skhodimosti ryadov Fure - Uolsha”, Soobsch. AN Gruz. SSR, 64:2 (1971), 274–276

[17] Malykhin Yu.V., Telyakovskii S.A., Kholschevnikova N.N., “Integriruemost summy modulei blokov ryadov Fure - Uolsha funktsii ogranichennoi variatsii”, Tr. MIRAN, 290 (2015), 323–334

[18] Kuznetsova M.A., “Obobschennaya absolyutnaya skhodimost ryadov Fure po multiplikativnym sistemam funktsii obobschennoi ogranichennoi variatsii”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 17:3 (2017), 304–312 | MR

[19] Volosivets S.S., Kuznetsova M.A., “Obobschennaya absolyutnaya skhodimost prostykh i dvoinykh ryadov po multiplikativnym sistemam”, Mat. zametki, 107:2 (2020), 195–209