Shape Preserving Conditions for Integro Quadratic Spline Interpolation in the Mean
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 71-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Earlier, Yu.N. Subbotin considered the problem of interpolation in the mean, where the interpolated values of the function are replaced by mean values on an interval. In his paper, the grid was uniform, but the space grid step could differ from the size of the averaging intervals. Subbotin investigated the existence of such splines and their convergence in different metrics. In the literature, splines of this type are also called integro splines or histosplines. The present paper considers a quadratic spline interpolating in the mean on an arbitrary nonuniform grid of a closed interval, where the averaging intervals are the grid intervals. Sufficient conditions are obtained for the inheritance by an integro spline of certain properties of the approximated function such as nonnegativity, monotonicity, and convexity.
Keywords: integro spline, interpolation in the mean, shape preservation, quadratic splines.
@article{TIMM_2022_28_4_a6,
     author = {Yu. S. Volkov},
     title = {Shape {Preserving} {Conditions} for {Integro} {Quadratic} {Spline} {Interpolation} in the {Mean}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--77},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a6/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - Shape Preserving Conditions for Integro Quadratic Spline Interpolation in the Mean
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 71
EP  - 77
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a6/
LA  - ru
ID  - TIMM_2022_28_4_a6
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T Shape Preserving Conditions for Integro Quadratic Spline Interpolation in the Mean
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 71-77
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a6/
%G ru
%F TIMM_2022_28_4_a6
Yu. S. Volkov. Shape Preserving Conditions for Integro Quadratic Spline Interpolation in the Mean. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 71-77. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a6/

[1] Subbotin Yu.N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN SSSR, 138 (1975), 118–173

[2] Schoenberg I.J., “Splines and histograms”, Spline functions and approximation theory, Proc. Symp. (Edmonton, 1972), Internat. Ser. Numer. Math., 21, eds. A. Meir, A. Sharma, Birkhäuser, Basel, 1973, 277–327 | DOI | MR

[3] Wu J., Zhang X., “Integro quadratic spline interpolation”, Appl. Math. Model., 39:10–11 (2015), 2973–2980 | DOI | MR

[4] Lang F.-G., Xu X.-P., “On the superconvergence of some quadratic integro-splines at the mid-knots of a uniform partition”, Appl. Math. Comput., 338 (2018), 507–514 | DOI | MR

[5] Zhanlav T., “Shape preserving properties of some $C^2$ cubic spline approximations”, Sci. Trans. NUM, 7 (2000), 21–35

[6] Zhanlav T., Mijiddorj R., “Convexity and monotonicity properties of the local integro cubic spline”, Appl. Math. Comput., 293 (2017), 131–137 | DOI | MR

[7] Zhanlav T., Mijiddorj R.-O., “Construction of a family of $C^1$ convex integro cubic splines”, Comm. Math. Appl., 11:4 (2020), 527–538 | DOI | MR

[8] Volkov Yu.S., Bogdanov V.V., Miroshnichenko V.L., Shevaldin V.T., “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Mat. zametki, 88:6 (2010), 836–844

[9] Volkov Yu.S., Shevaldin V.T., “Usloviya formosokhraneniya pri interpolyatsii splainami vtoroi stepeni po Subbotinu i po Marsdenu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 145–152

[10] Bogdanov V.V., Volkov Yu.S., “Usloviya formosokhraneniya pri interpolyatsii kubicheskimi splainami”, Mat. tr., 22:1 (2019), 19–67 | DOI

[11] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constructive theory of functions, Proc. Int. Conf. (Varna, 1984), eds. B. Sendov, P. Petrushev, R. Maleev, S. Tashev, Publ. House Bulgar. Acad. Sci., Sofia, 1984, 610–620

[12] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[13] Bogdanov V.V., Volkov Yu.S., “Vybor parametrov obobschennykh kubicheskikh splainov pri vypukloi interpolyatsii”, Sib. zhurn. vychisl. matematiki, 9:1 (2006), 5–22

[14] Bogdanov V.V., Volkov Yu.S., “Near-optimal tension parameters in convexity preserving interpolation by generalized cubic splines”, Numer. Algorithms, 86:2 (2021), 833–861 | DOI | MR

[15] Volkov Yu.S., “Novyi sposob postroeniya interpolyatsionnykh kubicheskikh splainov”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 231–241 | MR