@article{TIMM_2022_28_4_a6,
author = {Yu. S. Volkov},
title = {Shape {Preserving} {Conditions} for {Integro} {Quadratic} {Spline} {Interpolation} in the {Mean}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {71--77},
year = {2022},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a6/}
}
Yu. S. Volkov. Shape Preserving Conditions for Integro Quadratic Spline Interpolation in the Mean. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 71-77. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a6/
[1] Subbotin Yu.N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN SSSR, 138 (1975), 118–173
[2] Schoenberg I.J., “Splines and histograms”, Spline functions and approximation theory, Proc. Symp. (Edmonton, 1972), Internat. Ser. Numer. Math., 21, eds. A. Meir, A. Sharma, Birkhäuser, Basel, 1973, 277–327 | DOI | MR
[3] Wu J., Zhang X., “Integro quadratic spline interpolation”, Appl. Math. Model., 39:10–11 (2015), 2973–2980 | DOI | MR
[4] Lang F.-G., Xu X.-P., “On the superconvergence of some quadratic integro-splines at the mid-knots of a uniform partition”, Appl. Math. Comput., 338 (2018), 507–514 | DOI | MR
[5] Zhanlav T., “Shape preserving properties of some $C^2$ cubic spline approximations”, Sci. Trans. NUM, 7 (2000), 21–35
[6] Zhanlav T., Mijiddorj R., “Convexity and monotonicity properties of the local integro cubic spline”, Appl. Math. Comput., 293 (2017), 131–137 | DOI | MR
[7] Zhanlav T., Mijiddorj R.-O., “Construction of a family of $C^1$ convex integro cubic splines”, Comm. Math. Appl., 11:4 (2020), 527–538 | DOI | MR
[8] Volkov Yu.S., Bogdanov V.V., Miroshnichenko V.L., Shevaldin V.T., “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Mat. zametki, 88:6 (2010), 836–844
[9] Volkov Yu.S., Shevaldin V.T., “Usloviya formosokhraneniya pri interpolyatsii splainami vtoroi stepeni po Subbotinu i po Marsdenu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 145–152
[10] Bogdanov V.V., Volkov Yu.S., “Usloviya formosokhraneniya pri interpolyatsii kubicheskimi splainami”, Mat. tr., 22:1 (2019), 19–67 | DOI
[11] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constructive theory of functions, Proc. Int. Conf. (Varna, 1984), eds. B. Sendov, P. Petrushev, R. Maleev, S. Tashev, Publ. House Bulgar. Acad. Sci., Sofia, 1984, 610–620
[12] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR
[13] Bogdanov V.V., Volkov Yu.S., “Vybor parametrov obobschennykh kubicheskikh splainov pri vypukloi interpolyatsii”, Sib. zhurn. vychisl. matematiki, 9:1 (2006), 5–22
[14] Bogdanov V.V., Volkov Yu.S., “Near-optimal tension parameters in convexity preserving interpolation by generalized cubic splines”, Numer. Algorithms, 86:2 (2021), 833–861 | DOI | MR
[15] Volkov Yu.S., “Novyi sposob postroeniya interpolyatsionnykh kubicheskikh splainov”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 231–241 | MR