An observer and a pair of objects enveloping a set of convex regions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 64-70
Voir la notice de l'article provenant de la source Math-Net.Ru
In the space $X$ ($X=\mathbb R^2,\mathbb R^3$), there are a family of pairwise disjoint convex closed regions $G_i$ and a shortest trajectory $\mathcal T$ connecting given initial and finite points and enveloping the regions $G_i$, $\mathcal T\cap \cup_i \stackrel{\circ} G_i=\varnothing$. Two objects, $t$ and $T$, move under observation along the trajectory $\mathcal T$ with a constant speed, and the distance $\rho(t,T)$ between the objects along the curve $\mathcal T$ satisfies the condition $0\rho(t,T)\le d$ for given $d>0$. We construct a trajectory $\mathcal T_f$ of the observer's motion and find the observer's speed mode such that the following inequality holds at any time $\tau$ for given $\delta>d$: $$ \min\big\{\|f_{\tau}-t_{\tau}\|,\|f_{\tau}-T_{\tau}\|\big\}=\delta. $$
Keywords:
moving object, trajectory, speed mode.
Mots-clés : observer
Mots-clés : observer
@article{TIMM_2022_28_4_a5,
author = {V. I. Berdyshev},
title = {An observer and a pair of objects enveloping a set of convex regions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {64--70},
publisher = {mathdoc},
volume = {28},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a5/}
}
V. I. Berdyshev. An observer and a pair of objects enveloping a set of convex regions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 64-70. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a5/