On One Generalized Translation and the Corresponding Inequality of Different Metrics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 40-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we discuss the properties of the generalized translation operator generated by the system of functions $\left\{ \cos\left(\frac{(2k-1)\pi }{2}t\right)\right\}_{k=1}^\infty$ in the spaces $L^p(0,1)$, $p\ge 1$. The translation operator is applied to the study of the Nikol'skii inequality between the uniform norm and the $L^p$-norm of polynomials in this system.
Keywords: generalized translation operator, trigonometric polynomial, inequality of different metrics.
@article{TIMM_2022_28_4_a3,
     author = {V. V. Arestov and M. V. Deikalova},
     title = {On {One} {Generalized} {Translation} and the {Corresponding} {Inequality} of {Different} {Metrics}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {40--53},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a3/}
}
TY  - JOUR
AU  - V. V. Arestov
AU  - M. V. Deikalova
TI  - On One Generalized Translation and the Corresponding Inequality of Different Metrics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 40
EP  - 53
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a3/
LA  - ru
ID  - TIMM_2022_28_4_a3
ER  - 
%0 Journal Article
%A V. V. Arestov
%A M. V. Deikalova
%T On One Generalized Translation and the Corresponding Inequality of Different Metrics
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 40-53
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a3/
%G ru
%F TIMM_2022_28_4_a3
V. V. Arestov; M. V. Deikalova. On One Generalized Translation and the Corresponding Inequality of Different Metrics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 40-53. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a3/

[1] Vatson G.N., Teoriya besselevykh funktsii, Chast pervaya, IL, M., 1949, 798 pp.

[2] Beitmen G., Erdeii A.I., Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, Nauka, M., 1966, 295 pp. | MR

[3] Vladimirov V.S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[4] Babenko A.G., “Tochnoe neravenstvo Dzheksona - Stechkina v prostranstve $L^2(\mathbb{R}^m)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5 (1998), 183–198

[5] Abilov V.A., Abilova F.V., Kerimov M.K., “Nekotorye voprosy priblizheniya funktsii summami Fure - Besselya”, Zhurn. vychisl. matematiki i mat. fiziki, 53:7 (2013), 1051–1057 | MR

[6] Arestov V., Babenko A., Deikalova M., Horváth A., “Nikol'skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line”, Anal. Math., 44:1 (2018), 21–42 | DOI | MR

[7] Levitan B.M., “Razlozheniya po funktsiyam Besselya v ryady i integraly Fure”, Uspekhi mat. nauk, 6:2 (1951), 102–143 | MR

[8] Nikolskii S.M., Kurs matematicheskogo analiza, v. 1, Nauka, Glavnaya redaktsiya fiz.-mat. lit., M., 1983, 461 pp.

[9] Gashkov S.B., Chubarikov V.N., Arifmetika, algoritmy, clozhnost, vychislenii, Drofa, Moskva, 2005, 320 pp.

[10] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp.

[11] Arestov V.V., “A characterization of extremal elements in some linear problems”, Ural Math. J., 3:2 (2017), 22–32 | DOI | MR

[12] Arestov V.V., Deikalova M.V., “Neravenstvo Nikolskogo dlya algebraicheskikh polinomov na mnogomernoi evklidovoi sfere”, Tr. In-ta matematik i mekhaniki UrO RAN, 19:2 (2013), 34–47

[13] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_q$-norm with ultraspherical weight of algebraic polynomials on an interval”, Comput. Methods Funct. Theory, 15:4 (2015), 689–708 | DOI | MR

[14] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_q$-norm with Jacobi weight of algebraic polynomials on an interval”, Analysis Math., 42:2 (2016), 91–120 | DOI | MR

[15] Arestov V., Deikalova M., Horváth A., “On Nikol'skii type inequality between the uniform norm and the integral q-norm with Laguerre weight of algebraic polynomials on the half-line”, J. Approx. Theory, 222 (2017), 40–54 | DOI | MR

[16] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 2, Nauka, M., 1978, 432 pp. | MR

[17] Taikov L.V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, Uspekhi mat. nauk, 20:3 (1965), 205–211 | MR

[18] Babenko V., Kofanov V., Pichugov S., “Comparison of rearrangement and Kolmogorov-Nagy type inequalities for periodic functions”, Approximation Theory, A Volume Dedicated to Blagovest Sendov, ed. B. Bojanov, Darba, Sofia, 2002, 24–53 | MR

[19] Gorbachev D.V., “Usilenie nizhnei otsenki Taikova v neravenstve mezhdu $C$- i $L$-normami dlya trigonometricheskikh polinomov”, Mat. zametki, 74:1 (2003), 132–134 | MR

[20] Gorbachev D.V., “Integralnaya zadacha Konyagina i $(C,L)$-konstanty Nikolskogo”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11:2 (2005), 72–91

[21] Gorbachev D.V., Izbrannye zadachi teorii funktsii i teorii priblizhenii i ikh prilozheniya, Izd-vo “Grif i K”, Tula, 2005, 152 pp.

[22] Ganzburg M., Tikhonov S., “On sharp constants in Bernstein–Nikol'skii inequalities”, Constr. Approx., 45:3 (2017), 449–466 | DOI | MR

[23] Gorbachev D.V., Martyanov I.A., “O vzaimosvyazi konstant Nikolskogo dlya trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshev. sb., 19:2 (2018), 80–89 | MR