Intertwining of maxima of sum of translates functions with nonsingular kernels
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 262-272

Voir la notice de l'article provenant de la source Math-Net.Ru

In previous papers we investigated so-called sum of translates functions $F(\mathbf{x},t):=J(t)+\sum_{j=1}^n \nu_j K(t-x_j)$, where $J:[0,1]\to \underline{\mathbb{R}}:=\mathbb R\cup\{-\infty\}$ is a “sufficiently nondegenerate” and upper-bounded “field function”, and $K:[-1,1]\to \underline{\mathbb{R}}$ is a fixed “kernel function”, concave both on $(-1,0)$ and $(0,1)$, and also satisfying the singularity condition $K(0)=\lim_{t\to 0} K(t)=-\infty$. For node systems $\mathbf{x}:=(x_1,\ldots,x_n)$ with $x_0:=0\le x_1\le\dots\le x_n\le 1=:x_{n+1}$, we analyzed the behavior of the local maxima vector $\mathbf{m}:=(m_0,m_1,\ldots,m_n)$, where $m_j:=m_j(\mathbf{x}):=\sup_{x_j\le t\le x_{j+1}} F(\mathbf{x},t)$. Among other results we proved a strong intertwining property: if the kernel is decreasing on $(-1,0)$ and increasing on $(0,1)$, and the field function is upper semicontinuous, then for any two different node systems there are $i,j$ such that $m_i(\mathbf{x})$$m_i(\mathbf{y})$ and $m_j(\mathbf{x})>m_j(\mathbf{y})$. Here we partially succeed to extend this even to nonsingular kernels.
Keywords: minimax problems; kernel function; sum of translates function; vector of local maxima; equioscillation; intertwining of interval maxima.
@article{TIMM_2022_28_4_a23,
     author = {B. Farkas and B. Nagy and Sz. Gy. R\'ev\'esz},
     title = {Intertwining of maxima of sum of translates functions with nonsingular kernels},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {262--272},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a23/}
}
TY  - JOUR
AU  - B. Farkas
AU  - B. Nagy
AU  - Sz. Gy. Révész
TI  - Intertwining of maxima of sum of translates functions with nonsingular kernels
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 262
EP  - 272
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a23/
LA  - en
ID  - TIMM_2022_28_4_a23
ER  - 
%0 Journal Article
%A B. Farkas
%A B. Nagy
%A Sz. Gy. Révész
%T Intertwining of maxima of sum of translates functions with nonsingular kernels
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 262-272
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a23/
%G en
%F TIMM_2022_28_4_a23
B. Farkas; B. Nagy; Sz. Gy. Révész. Intertwining of maxima of sum of translates functions with nonsingular kernels. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 262-272. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a23/