Voir la notice du chapitre de livre
@article{TIMM_2022_28_4_a23,
author = {B. Farkas and B. Nagy and Sz. Gy. R\'ev\'esz},
title = {Intertwining of maxima of sum of translates functions with nonsingular kernels},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {262--272},
year = {2022},
volume = {28},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a23/}
}
TY - JOUR AU - B. Farkas AU - B. Nagy AU - Sz. Gy. Révész TI - Intertwining of maxima of sum of translates functions with nonsingular kernels JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 262 EP - 272 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a23/ LA - en ID - TIMM_2022_28_4_a23 ER -
B. Farkas; B. Nagy; Sz. Gy. Révész. Intertwining of maxima of sum of translates functions with nonsingular kernels. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 262-272. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a23/
[1] Bojanov B., “A generalization of Chebyshev polynomials”, J. Approx. Theory, 26:4 (1979), 293–300 | DOI | MR
[2] Bojanov B., “A generalization of Chebyshev polynomials. II”, Pliska Stud. Math. Bulgar., 5 (1983), 93–96 | MR
[3] Farkas B., Nagy B., and Révész Sz.Gy., Fenton type minimax problems for sum of translates functions, preprint, 2022, 27 pp., arXiv: 2210.04348
[4] Farkas B., Nagy B., and Révész Sz.Gy., A homeomorphism theorem for sums of translates, preprint, 2022, 42 pp., arXiv: 2112.11029
[5] Farkas B., Nagy B., and Révész Sz.Gy., On the weighted Bojanov–Chebyshev problem and the sum of translates method of Fenton, preprint, 2022, 33 pp., arXiv: 2112.10169
[6] Farkas B., Nagy B., and Révész Sz.Gy., “A minimax problem for sums of translates on the torus”, Trans. London Math. Soc., 5 (2018), 1–46 | DOI | MR
[7] Fenton P.C., “A min-max theorem for sums of translates of a function”, J. Math. Anal. Appl., 244:1 (2000), 214–222 | DOI | MR
[8] Shi Y.G., “A minimax problem admitting the equioscillation characterization of Bernstein and Erdős”, J. Approx. Theory, 92:3 (1998), 463–471 | DOI | MR