On Yu. N. Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 237-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Subbotin's problem of extremal functional interpolation of numerical sequences $\{y_k\}_{k=0}^{\infty}$ such that their first terms $y_0,y_1,\ldots,y_{s-1}$ are given and the $n$th-order divided differences are bounded is considered on an arbitrary grid $\Delta=\{x_k\}_{k=0}^{\infty}$ of the semiaxis $[x_0;+\infty)$. It is required to find an $n$-times differentiable function $f$ with the smallest norm of the $n$th-order derivative in the space $L_{\infty}$ such that $f(x_k)=y_k$ $(k \in \mathbb{Z}_+)$. Subbotin formulated and studied this problem only for a uniform grid on the semiaxis $[0;+\infty)$. We prove the finiteness of the smallest norm for $s\ge n$ if the smallest step of the interpolation grid $\underline{h}=\inf\limits_k(x_{k+1}-x_{k})$ is bounded away from zero and the largest step $\overline{h}=\sup\limits_k(h_{k+1}-h_k)$ is bounded away from infinity. In the case of the second derivative (i.e., for $n=2$), the required value is calculated exactly for $s=2$ and is estimated from above for $s\ge 3$ in terms of the grid steps.
Mots-clés : local interpolation, semiaxis
Keywords: arbitrary grid, divided differences.
@article{TIMM_2022_28_4_a21,
     author = {V. T. Shevaldin},
     title = {On {Yu.} {N.} {Subbotin's} {Circle} of {Ideas} in the {Problem} of {Local} {Extremal} {Interpolation} on the {Semiaxis}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {237--249},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a21/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - On Yu. N. Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 237
EP  - 249
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a21/
LA  - ru
ID  - TIMM_2022_28_4_a21
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T On Yu. N. Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 237-249
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a21/
%G ru
%F TIMM_2022_28_4_a21
V. T. Shevaldin. On Yu. N. Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 237-249. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a21/

[1] Subbotin Yu.N., “Some extremal problems of interpolation and interpolation in the mean”, East J. Approx., 2:2 (1996), 155–167 | MR

[2] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42

[3] Subbotin Yu.N., Novikov S.I., Shevaldin V.T., “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:2 (2018), 200–225

[4] Favard J., “Sur I'interpolation”, J. Math. Pures Appl., 19:9 (1940), 281–306 | MR

[5] Ryabenkii V.S., Filippov A.F., Ob ustoichivosti raznostnykh uravnenii, Gostekhizdat, M., 1956, 171 pp. | MR

[6] Subbotin Yu.N., Chernykh N.I., “Poryadok nailuchshei splain-approksimatsii nekotorykh klassov funktsii”, Mat. zametki, 7:1 (1970), 31–42

[7] Muir Th., The theory of determinants, v. 1, Preprinted in Dover Publ., NY, 1960, 503 pp. | MR

[8] Gautschi W., “On inverses of Vandermonde and confluent Vandermonde matrices”, Numer. Math., 4:1 (1962), 117–123 | DOI | MR