On Yu.\ N.\ Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 237-249
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Subbotin's problem of extremal functional interpolation of numerical sequences $\{y_k\}_{k=0}^{\infty}$ such that their first terms $y_0,y_1,\ldots,y_{s-1}$ are given and the $n$th-order divided differences are bounded is considered on an arbitrary grid $\Delta=\{x_k\}_{k=0}^{\infty}$ of the semiaxis $[x_0;+\infty)$. It is required to find an $n$-times differentiable function $f$ with the smallest norm of the $n$th-order derivative in the space $L_{\infty}$ such that $f(x_k)=y_k$ $(k \in \mathbb{Z}_+)$. Subbotin formulated and studied this problem only for a uniform grid on the semiaxis $[0;+\infty)$. We prove the finiteness of the smallest norm for $s\ge n$ if the smallest step of the interpolation grid $\underline{h}=\inf\limits_k(x_{k+1}-x_{k})$ is bounded away from zero and the largest step $\overline{h}=\sup\limits_k(h_{k+1}-h_k)$ is bounded away from infinity. In the case of the second derivative (i.e., for $n=2$), the required value is calculated exactly for $s=2$ and is estimated from above for $s\ge 3$ in terms of the grid steps.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
local interpolation, semiaxis
Keywords: arbitrary grid, divided differences.
                    
                  
                
                
                Keywords: arbitrary grid, divided differences.
@article{TIMM_2022_28_4_a21,
     author = {V. T. Shevaldin},
     title = {On {Yu.\} {N.\} {Subbotin's} {Circle} of {Ideas} in the {Problem} of {Local} {Extremal} {Interpolation} on the {Semiaxis}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {237--249},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a21/}
}
                      
                      
                    TY - JOUR AU - V. T. Shevaldin TI - On Yu.\ N.\ Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 237 EP - 249 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a21/ LA - ru ID - TIMM_2022_28_4_a21 ER -
%0 Journal Article %A V. T. Shevaldin %T On Yu.\ N.\ Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis %J Trudy Instituta matematiki i mehaniki %D 2022 %P 237-249 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a21/ %G ru %F TIMM_2022_28_4_a21
V. T. Shevaldin. On Yu.\ N.\ Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 237-249. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a21/
