Mots-clés : $L^p$-spaces.
@article{TIMM_2022_28_4_a20,
author = {S. A. Telyakovskii and N. N. Kholshchevnikova},
title = {Conditions under {Which} the {Sums} of {Absolute} {Values} of {Blocks} in the {Fourier{\textendash}Walsh} {Series} for {Functions} {of~Bounded} {Variation} {Belong} to {Spaces~}$L^p$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {226--236},
year = {2022},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/}
}
TY - JOUR AU - S. A. Telyakovskii AU - N. N. Kholshchevnikova TI - Conditions under Which the Sums of Absolute Values of Blocks in the Fourier–Walsh Series for Functions of Bounded Variation Belong to Spaces $L^p$ JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 226 EP - 236 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/ LA - ru ID - TIMM_2022_28_4_a20 ER -
%0 Journal Article %A S. A. Telyakovskii %A N. N. Kholshchevnikova %T Conditions under Which the Sums of Absolute Values of Blocks in the Fourier–Walsh Series for Functions of Bounded Variation Belong to Spaces $L^p$ %J Trudy Instituta matematiki i mehaniki %D 2022 %P 226-236 %V 28 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/ %G ru %F TIMM_2022_28_4_a20
S. A. Telyakovskii; N. N. Kholshchevnikova. Conditions under Which the Sums of Absolute Values of Blocks in the Fourier–Walsh Series for Functions of Bounded Variation Belong to Spaces $L^p$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 226-236. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/
[1] Telyakovskii S.A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219 (1997), 378–386
[2] Telyakovskii S.A., “O ravnomernoi skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 232 (2001), 318–326
[3] Telyakovskii S.A., “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1–2 (2004), 215–218 | MR
[4] Belov A.S., Telyakovskii S.A., “Usilenie teorem Dirikhle - Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40
[5] Trigub R.M., “A note on the paper of Telyakovski “Certain properties of Fourier series of functions with bounded variation””, East J. Approx., 13:1 (2007), 1–6 | MR
[6] Malykhin Yu.V., Telyakovskii S.A., Kholschevnikova N.N., “Integriruemost summy modulei blokov ryadov Fure - Uolsha funktsii ogranichennoi variatsii”, Tr. MIAN, 290 (2015), 323–334
[7] Zastavnyi V.P., “Otsenki summ iz modulei blokov trigonometricheskikh ryadov Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 166–179
[8] Temlyakov V.N., “On absolute summation of Fourier series by subsequences”, Analysis Math., 8 (1982), 71–77 | DOI | MR
[9] Pavlov A.P., “Ob absolyutnoi summiruemosti ryadov Fure funktsii iz klassov $\operatorname{Lip}(\alpha,p)$”, Mat. zametki, 50:1 (1991), 74–83 | MR
[10] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987, 344 pp. | MR