Conditions under Which the Sums of Absolute Values of Blocks in the Fourier--Walsh Series for Functions of~Bounded Variation Belong to Spaces~$L^p$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 226-236
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the following question is considered: what conditions on a strictly increasing sequence of positive integers $\{n_j\}_{j=1}^{\infty}$ guarantee that the sum of the series
$$ \sum_{j=1}^{\infty}\bigg|\sum_{k=n_j}^{n_{j+1}-1}c_k(f) w_k(x)\bigg|,$$
where $c_k(f)$ are the Walsh–Fourier coefficients of a function $f$, belongs to the space $L^p[0,1)$, $p>1$, for any function $f$ of bounded variation?
For $p=\infty$, it is proved that such a sequence does not exist. For finite $p>1$, sufficient conditions are obtained for the sequence $\{n_{j}\}$; these conditions are similar to the ones obtained by the first author in the trigonometric case.
Keywords:
Walsh–Fourier series, functions of bounded variation
Mots-clés : $L^p$-spaces.
Mots-clés : $L^p$-spaces.
@article{TIMM_2022_28_4_a20,
author = {S. A. Telyakovskii and N. N. Kholshchevnikova},
title = {Conditions under {Which} the {Sums} of {Absolute} {Values} of {Blocks} in the {Fourier--Walsh} {Series} for {Functions} {of~Bounded} {Variation} {Belong} to {Spaces~}$L^p$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {226--236},
publisher = {mathdoc},
volume = {28},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/}
}
TY - JOUR AU - S. A. Telyakovskii AU - N. N. Kholshchevnikova TI - Conditions under Which the Sums of Absolute Values of Blocks in the Fourier--Walsh Series for Functions of~Bounded Variation Belong to Spaces~$L^p$ JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 226 EP - 236 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/ LA - ru ID - TIMM_2022_28_4_a20 ER -
%0 Journal Article %A S. A. Telyakovskii %A N. N. Kholshchevnikova %T Conditions under Which the Sums of Absolute Values of Blocks in the Fourier--Walsh Series for Functions of~Bounded Variation Belong to Spaces~$L^p$ %J Trudy Instituta matematiki i mehaniki %D 2022 %P 226-236 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/ %G ru %F TIMM_2022_28_4_a20
S. A. Telyakovskii; N. N. Kholshchevnikova. Conditions under Which the Sums of Absolute Values of Blocks in the Fourier--Walsh Series for Functions of~Bounded Variation Belong to Spaces~$L^p$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 226-236. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/