Conditions under Which the Sums of Absolute Values of Blocks in the Fourier--Walsh Series for Functions of~Bounded Variation Belong to Spaces~$L^p$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 226-236

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the following question is considered: what conditions on a strictly increasing sequence of positive integers $\{n_j\}_{j=1}^{\infty}$ guarantee that the sum of the series $$ \sum_{j=1}^{\infty}\bigg|\sum_{k=n_j}^{n_{j+1}-1}c_k(f) w_k(x)\bigg|,$$ where $c_k(f)$ are the Walsh–Fourier coefficients of a function $f$, belongs to the space $L^p[0,1)$, $p>1$, for any function $f$ of bounded variation? For $p=\infty$, it is proved that such a sequence does not exist. For finite $p>1$, sufficient conditions are obtained for the sequence $\{n_{j}\}$; these conditions are similar to the ones obtained by the first author in the trigonometric case.
Keywords: Walsh–Fourier series, functions of bounded variation
Mots-clés : $L^p$-spaces.
@article{TIMM_2022_28_4_a20,
     author = {S. A. Telyakovskii and N. N. Kholshchevnikova},
     title = {Conditions under {Which} the {Sums} of {Absolute} {Values} of {Blocks} in the {Fourier--Walsh} {Series} for {Functions} {of~Bounded} {Variation} {Belong} to {Spaces~}$L^p$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--236},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
AU  - N. N. Kholshchevnikova
TI  - Conditions under Which the Sums of Absolute Values of Blocks in the Fourier--Walsh Series for Functions of~Bounded Variation Belong to Spaces~$L^p$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 226
EP  - 236
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/
LA  - ru
ID  - TIMM_2022_28_4_a20
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%A N. N. Kholshchevnikova
%T Conditions under Which the Sums of Absolute Values of Blocks in the Fourier--Walsh Series for Functions of~Bounded Variation Belong to Spaces~$L^p$
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 226-236
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/
%G ru
%F TIMM_2022_28_4_a20
S. A. Telyakovskii; N. N. Kholshchevnikova. Conditions under Which the Sums of Absolute Values of Blocks in the Fourier--Walsh Series for Functions of~Bounded Variation Belong to Spaces~$L^p$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 226-236. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/