Conditions under Which the Sums of Absolute Values of Blocks in the Fourier–Walsh Series for Functions of Bounded Variation Belong to Spaces $L^p$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 226-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, the following question is considered: what conditions on a strictly increasing sequence of positive integers $\{n_j\}_{j=1}^{\infty}$ guarantee that the sum of the series $$ \sum_{j=1}^{\infty}\bigg|\sum_{k=n_j}^{n_{j+1}-1}c_k(f) w_k(x)\bigg|,$$ where $c_k(f)$ are the Walsh–Fourier coefficients of a function $f$, belongs to the space $L^p[0,1)$, $p>1$, for any function $f$ of bounded variation? For $p=\infty$, it is proved that such a sequence does not exist. For finite $p>1$, sufficient conditions are obtained for the sequence $\{n_{j}\}$; these conditions are similar to the ones obtained by the first author in the trigonometric case.
Keywords: Walsh–Fourier series, functions of bounded variation
Mots-clés : $L^p$-spaces.
@article{TIMM_2022_28_4_a20,
     author = {S. A. Telyakovskii and N. N. Kholshchevnikova},
     title = {Conditions under {Which} the {Sums} of {Absolute} {Values} of {Blocks} in the {Fourier{\textendash}Walsh} {Series} for {Functions} {of~Bounded} {Variation} {Belong} to {Spaces~}$L^p$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--236},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
AU  - N. N. Kholshchevnikova
TI  - Conditions under Which the Sums of Absolute Values of Blocks in the Fourier–Walsh Series for Functions of Bounded Variation Belong to Spaces $L^p$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 226
EP  - 236
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/
LA  - ru
ID  - TIMM_2022_28_4_a20
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%A N. N. Kholshchevnikova
%T Conditions under Which the Sums of Absolute Values of Blocks in the Fourier–Walsh Series for Functions of Bounded Variation Belong to Spaces $L^p$
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 226-236
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/
%G ru
%F TIMM_2022_28_4_a20
S. A. Telyakovskii; N. N. Kholshchevnikova. Conditions under Which the Sums of Absolute Values of Blocks in the Fourier–Walsh Series for Functions of Bounded Variation Belong to Spaces $L^p$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 226-236. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a20/

[1] Telyakovskii S.A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219 (1997), 378–386

[2] Telyakovskii S.A., “O ravnomernoi skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 232 (2001), 318–326

[3] Telyakovskii S.A., “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1–2 (2004), 215–218 | MR

[4] Belov A.S., Telyakovskii S.A., “Usilenie teorem Dirikhle - Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40

[5] Trigub R.M., “A note on the paper of Telyakovski “Certain properties of Fourier series of functions with bounded variation””, East J. Approx., 13:1 (2007), 1–6 | MR

[6] Malykhin Yu.V., Telyakovskii S.A., Kholschevnikova N.N., “Integriruemost summy modulei blokov ryadov Fure - Uolsha funktsii ogranichennoi variatsii”, Tr. MIAN, 290 (2015), 323–334

[7] Zastavnyi V.P., “Otsenki summ iz modulei blokov trigonometricheskikh ryadov Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 166–179

[8] Temlyakov V.N., “On absolute summation of Fourier series by subsequences”, Analysis Math., 8 (1982), 71–77 | DOI | MR

[9] Pavlov A.P., “Ob absolyutnoi summiruemosti ryadov Fure funktsii iz klassov $\operatorname{Lip}(\alpha,p)$”, Mat. zametki, 50:1 (1991), 74–83 | MR

[10] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987, 344 pp. | MR