On estimates of linear widths for classes of multivariate functions in the Lorentz space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 23-39
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider spaces of periodic multivariate functions, namely, the Lorentz space $L_{p,\tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p, \tau, \theta}^{\bar{r}}B$, and study the order of linear widths of the class $S_{p, \tau, \theta}^{\bar{r}}B$. The paper consists of the introduction and two sections. The introduction gives definitions, the notation used in the paper, and brief information on previous results on the issue under consideration. The first section contains two well-known statements that are often used in the proof of the main results. In the second section, order-exact estimates are established for the linear widths of the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q,\tau_{2}}(\mathbb{T}^{m})$ for different ratios of the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$.
Keywords: linear widths, Lorentz space, the Nikol'skii–Besov class.
@article{TIMM_2022_28_4_a2,
     author = {G. A. Akishev},
     title = {On estimates of linear widths for classes of multivariate functions in the {Lorentz} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {23--39},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a2/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - On estimates of linear widths for classes of multivariate functions in the Lorentz space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 23
EP  - 39
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a2/
LA  - ru
ID  - TIMM_2022_28_4_a2
ER  - 
%0 Journal Article
%A G. A. Akishev
%T On estimates of linear widths for classes of multivariate functions in the Lorentz space
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 23-39
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a2/
%G ru
%F TIMM_2022_28_4_a2
G. A. Akishev. On estimates of linear widths for classes of multivariate functions in the Lorentz space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 23-39. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a2/

[1] Lorentz G.G., “Some new functional spaces”, Annals Math. Second ser., 51:1 (1950), 37–55 | DOI | MR

[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp.

[3] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp. | MR

[4] Amanov T.I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976, 224 pp. | MR

[5] Lizorkin P.I., Nikolskii S.M., “Prostranstva funktsii smeshannoi s dekompozitsionnoi tochki zreniya”, Tr. MIAN SSSR, 187 (1989), 143–161

[6] Tikhomirov V.M., “Poperechniki mnozhestv v funktsionalnom prostranstve i teoriya nailuchshikh priblizhenii”, Uspekhi mat. nauk, 15:3 (1960), 81–120 | MR

[7] Ismagilov R.S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, Uspekhi mat. nauk, 29:3 (1974), 161–178 | MR

[8] Maiorov V.E., “O lineinykh poperechnikakh sobolevskikh klassov”, Dokl. AN SSSR, 243:5 (1978), 1127–1130 | MR

[9] Höllig K., “Approximationszahlen von Sobolev-Einbettungen”, Math. Annal, 242 (1979), 273–281 | DOI | MR

[10] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178 (1986), 1–112

[11] Galeev E.M., “Lineinye poperechniki klassov periodicheskikh funktsii mnogikh peremennykh”, Vestn. MGU. Ser. Matematika, mekhanika, 1987, no. 4, 13–16

[12] Galeev E.M., “Lineinye poperechniki klassov Geldera - Nikolskogo periodicheskikh funktsii mnogikh peremennykh”, Mat. zametki, 59:2 (1996), 189–199

[13] Izaak A.D., “Poperechniki klassov Geldera - Nikolskogo i konechnomernykh mnozhestv v prostranstvakh so smeshannoi normoi”, Mat. zametki, 59:3 (1996), 459–461 | MR

[14] Romanyuk A.S., “Lineinye poperechniki klassov Besova periodicheskikh funktsii mnogikh peremennykh I”, Ukr. mat. zhurn., 53:5 (2001), 647–661 | MR

[15] Romanyuk A.S., “Lineinye poperechniki klassov Besova periodicheskikh funktsii mnogikh peremennykh II”, Ukr. mat. zhurn., 53:6 (2001), 965–977 | MR

[16] Romanyuk A.S., “Poperechniki i nailuchshee priblizhenie klassov $B_{p, \theta}^{r}$ periodicheskikh funktsii mnogikh peremennykh”, Anal. Math., 37 (2011), 181–213 | DOI

[17] Romanyuk A.S., “K voprosu o lineinykh poperechnikakh klassov $B_{p, \theta}^{r}$ periodicheskikh funktsii mnogikh peremennykh”, Ukr. mat. zhurn., 66:7 (2014), 970–982

[18] Romanyuk A.S., “Trigonometricheskie i lineinye poperechniki klassov periodicheskikh funktsii mnogikh peremennykh”, Ukr. mat. zhurn., 69:5 (2017), 670–681 | MR

[19] Bazarkhanov D.B., “Otsenki nekotorykh approksimativnykh kharakteristik prostranstv Nikolskogo - Besova obobschennoi smeshannoi gladkosti”, Dokl. RAN, 426:1 (2009), 11–14

[20] Malykhin Yu.V., Ryutin K.S., “Proizvedenie oktaedrov plokho priblizhaetsya v metrike $l_{2, 1}$”, Mat. zametki, 101:1 (2017), 85–90 | DOI | MR

[21] Tikhomirov V.M., “Teoriya priblizhenii”, Sovremen. problemy matematiki, M., 1987, 103–270

[22] Dinh Dũng, Temlyakov V.N., Ullrich T., Hyperbolic cross approximation, Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser / Springer, Cham, 2018, 222 pp. | DOI | MR

[23] König H., “s-numbers of Besov–Lorentz imbeddings”, Math. Nachr., 91 (1979), 389–400 | DOI | MR

[24] Akishev G., “Otsenki nailuchshikh priblizhenii funktsii klassa Nikolskogo - Besova v prostranstve Lorentsa trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:2 (2020), 5–27 | DOI | MR

[25] Gluskin E.D., “Normy sluchainykh matrits i poperechniki konechnomernykh mnozhestv”, Mat. sb., 120:2 (1983), 180–189 | MR

[26] Gluskin E.D., “Ob odnoi zadache o poperechnikakh”, Dokl. AN SSSR, 219:3 (1974), 527–530

[27] Akishev G., “O poryadkakh $M$-chlennykh priblizhenii klassov funktsii simmetrichnogo prostranstva”, Mat. zhurn., 14:4 (2014), 46–71