@article{TIMM_2022_28_4_a17,
author = {L. D. Popov},
title = {On parameter control in iterative linear programming methods based on a new class of smooth exterior penalty functions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {191--200},
year = {2022},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a17/}
}
TY - JOUR AU - L. D. Popov TI - On parameter control in iterative linear programming methods based on a new class of smooth exterior penalty functions JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 191 EP - 200 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a17/ LA - ru ID - TIMM_2022_28_4_a17 ER -
%0 Journal Article %A L. D. Popov %T On parameter control in iterative linear programming methods based on a new class of smooth exterior penalty functions %J Trudy Instituta matematiki i mehaniki %D 2022 %P 191-200 %V 28 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a17/ %G ru %F TIMM_2022_28_4_a17
L. D. Popov. On parameter control in iterative linear programming methods based on a new class of smooth exterior penalty functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 191-200. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a17/
[1] Dantsig Dzh., Lineinoe programmirovanie, ego obobscheniya i primeneniya, Progress, M., 1966, 600 pp.
[2] Fiakko A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972, 240 pp. | MR
[3] Zangvill U. I., Nelineinoe programmirovanie. Edinyi podkhod, Sov. radio, M., 1973, 312 pp. | MR
[4] Polak E., Chislenye metody optimizatsii, Mir, M., 1974, 376 pp.
[5] Eremin I. I., Dokl. AN SSSR, 173:4 (1967), Metod shtrafov v vypuklom programmirovanii
[6] Moiseev N. N., Ivanilov Yu. P., Stolyarova E. M., Metody optimizatsii, Nauka, M., 1978, 351 pp.
[7] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp. | MR
[8] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985, 509 pp. | MR
[9] Vasilev F.P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp. | MR
[10] Roos C., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization, John Wiley Sons Ltd, Chichester, 1997, 484 pp. | MR
[11] Eremin I.I., “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, Dokl. AN SSSR, 256:2 (1981), 272–276 | MR
[12] Eremin I. I., Mazurov Vl. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp.
[13] Kochikov I. V., Matvienko A. N., Yagola A. G., “Obobschennyi printsip nevyazki dlya resheniya nesovmestnykh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 24:7 (1984), 1087–1090 | MR
[14] Popov L. D., “Poisk obobschennykh reshenii nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya s pomoschyu barernykh funktsii”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 4:2 (2011), 134–146
[15] Popov L. D., “Primenenie barernykh funktsii dlya optimalnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya 1-go roda”, Avtomatika i telemekhanika, 2012, no. 3, 3–11
[16] Popov L. D., “Ob odnom prieme povysheniya gladkosti vneshnikh shtrafnykh funktsii v lineinom i vypuklom programmirovanii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:4 (2021), 88–101 | MR