Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 177-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Uniform with respect to the parameter $a\in(0,1)$ estimates of the functions $f_a(x)=\sum_{k=1}^{\infty}k^{-a}\cos kx$ and $g_a(x)=\sum_{k=1}^{\infty}k^{-a}\sin kx$ by the first terms of their asymptotic expansions $F_a(x)=\sin(\pi a/2)\Gamma(1-a)x^{a-1}$ and $G_a(x)=\cos(\pi a/2)\Gamma(1-a)x^{a-1}$ are obtained. Namely, it is proved that the inequalities $$G_a(x)-\dfrac{x}{2}(x)(x)-\dfrac{x}{12},$$ $$F_a(x)+\zeta(a)+\dfrac{\zeta(3)}{4\pi^3}\,x^2\sin(\pi a/2)(x)(x)+\zeta(a)+\dfrac{1}{18}\,x^2\sin(\pi a/2)$$ are valid for all $a\in(0,1)$ and $x\in(0,\pi]$. \indent It is shown that the estimates are unimprovable in the following sense. In the lower estimate for the sine series, the subtrahend $x/2$ cannot be replaced by $kx$ with any $k1/2$: the estimate ceases to be fulfilled for sufficiently small $x$ and the values of $a$ close to $1$. In the upper estimate, the subtrahend $x/12$ cannot be replaced by $kx$ with any $k>1/12$: the estimate ceases to be fulfilled for the values of $a$ and $x$ close to $0$. In the lower estimate for the cosine series, the multiplier $\zeta(3)/(4\pi^3)$ of $x^2\sin(\pi a/2)$ cannot be replaced by any larger number: the estimate ceases to be fulfilled for $x$ and $a$ close to $0$. In the upper estimate for the cosine series, the multiplier $1/18$ of $x^2\sin(\pi a/2)$ can probably be replaced by a smaller number but not by $1/24$: for every $a\in[0.98,1)$, such an estimate would not hold at the point $x=\pi$ as well as on a certain closed interval $x_0(a)\le x\le\pi$, where $x_0(a)\to0$ as $a\to1-$. The obtained results allow us to refine the estimates for the functions $f_a$ and $g_a$ established recently by other authors.
Keywords: special trigonometric series, periodic zeta function.
Mots-clés : polylogarithm
@article{TIMM_2022_28_4_a16,
     author = {A. Yu. Popov and T. V. Rodionov},
     title = {Uniform with {Respect} to the {Parameter} $a\in(0,1)$ {Two-Sided} {Estimates} of the {Sums} of {Sine} and {Cosine} {Series} with {Coefficients} $1/k^a$ by the {First} {Terms} of {Their} {Asymptotics}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {177--190},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a16/}
}
TY  - JOUR
AU  - A. Yu. Popov
AU  - T. V. Rodionov
TI  - Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 177
EP  - 190
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a16/
LA  - ru
ID  - TIMM_2022_28_4_a16
ER  - 
%0 Journal Article
%A A. Yu. Popov
%A T. V. Rodionov
%T Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 177-190
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a16/
%G ru
%F TIMM_2022_28_4_a16
A. Yu. Popov; T. V. Rodionov. Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 177-190. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a16/

[1] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967, 240 pp.

[2] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp. ; т. 2, 538 с. | MR

[3] Titchmarsh E.K., Teoriya dzeta-funktsii Rimana, Izd-vo inostrannoi lit-ry, M., 1953, 407 pp. | MR

[4] Higher transcendental functions, v. 1, ed. Erdélyi A., McGraw Hill, NY, 1953, 302 pp.

[5] Leau L., “Recherches des singularités d'une fonction définie par un développement de Taylor”, J. de Math.(5), 5 (1899), 365–425 | MR

[6] Liflyand E., Podkorytov A., “Lebesgue constants of Riesz type means of negative order”, J. Math. Anal. Appl., 505:2 (2022), 125618 | DOI | MR

[7] Lindelöf E.L., Le calcul des résidus et ses applications à la théorie des fonctions, Gauthier-Villar, Paris, 1905, 158 pp. | MR

[8] NIST Handbook of Mathematical Functions, eds. Olver F.W.J. et al., Cambridge Univ. Press, NY, 2010, 968 pp.; The online version: The NIST Digital Library of Mathematical Functions (DLMF) URL: https://dlmf.nist.gov/

[9] Truesdell C., “On a function which occurs in the theory of the structure of polymers”, Ann. Math. (2), 46:1 (1945), 144–157 | DOI | MR