Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 177-190
Voir la notice de l'article provenant de la source Math-Net.Ru
Uniform with respect to the parameter $a\in(0,1)$ estimates of the functions $f_a(x)=\sum_{k=1}^{\infty}k^{-a}\cos kx$ and $g_a(x)=\sum_{k=1}^{\infty}k^{-a}\sin kx$ by the first terms of their asymptotic expansions $F_a(x)=\sin(\pi a/2)\Gamma(1-a)x^{a-1}$ and $G_a(x)=\cos(\pi a/2)\Gamma(1-a)x^{a-1}$ are obtained. Namely, it is proved that the inequalities
$$G_a(x)-\dfrac{x}{2}(x)(x)-\dfrac{x}{12},$$
$$F_a(x)+\zeta(a)+\dfrac{\zeta(3)}{4\pi^3}\,x^2\sin(\pi a/2)(x)(x)+\zeta(a)+\dfrac{1}{18}\,x^2\sin(\pi a/2)$$
are valid for all $a\in(0,1)$ and $x\in(0,\pi]$.
\indent It is shown that the estimates are unimprovable in the following sense. In the lower estimate for the sine series, the subtrahend $x/2$ cannot be replaced by $kx$ with any $k1/2$: the estimate ceases to be fulfilled for sufficiently small $x$ and the values of $a$ close to $1$. In the upper estimate, the subtrahend $x/12$ cannot be replaced by $kx$ with any $k>1/12$: the estimate ceases to be fulfilled for the values of $a$ and $x$ close to $0$. In the lower estimate for the cosine series, the multiplier $\zeta(3)/(4\pi^3)$ of $x^2\sin(\pi a/2)$ cannot be replaced by any larger number: the estimate ceases to be fulfilled for $x$ and $a$ close to $0$. In the upper estimate for the cosine series, the multiplier $1/18$ of $x^2\sin(\pi a/2)$ can probably be replaced by a smaller number but not by $1/24$: for every $a\in[0.98,1)$, such an estimate would not hold at the point $x=\pi$ as well as on a certain closed interval $x_0(a)\le x\le\pi$, where $x_0(a)\to0$ as $a\to1-$. The obtained results allow us to refine the estimates for the functions $f_a$ and $g_a$ established recently by other authors.
Keywords:
special trigonometric series, periodic zeta function.
Mots-clés : polylogarithm
Mots-clés : polylogarithm
@article{TIMM_2022_28_4_a16,
author = {A. Yu. Popov and T. V. Rodionov},
title = {Uniform with {Respect} to the {Parameter} $a\in(0,1)$ {Two-Sided} {Estimates} of the {Sums} of {Sine} and {Cosine} {Series} with {Coefficients} $1/k^a$ by the {First} {Terms} of {Their} {Asymptotics}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {177--190},
publisher = {mathdoc},
volume = {28},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a16/}
}
TY - JOUR AU - A. Yu. Popov AU - T. V. Rodionov TI - Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 177 EP - 190 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a16/ LA - ru ID - TIMM_2022_28_4_a16 ER -
%0 Journal Article %A A. Yu. Popov %A T. V. Rodionov %T Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics %J Trudy Instituta matematiki i mehaniki %D 2022 %P 177-190 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a16/ %G ru %F TIMM_2022_28_4_a16
A. Yu. Popov; T. V. Rodionov. Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 177-190. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a16/