@article{TIMM_2022_28_4_a14,
author = {E. A. Pleshcheva},
title = {Interpolating orthogonal bases of n-separate {MRAs} and wavelets},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {154--163},
year = {2022},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a14/}
}
E. A. Pleshcheva. Interpolating orthogonal bases of n-separate MRAs and wavelets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 154-163. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a14/
[1] Mallat Stéphane G., “Multiresolution approximations and wavelet orthonormal bases of $L^2 (\mathbb{R})$”, Trans. Amer. Math. Soc., 315 (1989), 69–87 | DOI | MR
[2] Meyer Yves, Ondelettes et operateurs: Ondelettes, Hermann, 1990, 215 pp. | MR
[3] Plescheva E.A., “Novoe obobschenie ortogonalnykh bazisov vspleskov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:2 (2010), 264–271 | DOI
[4] Berkolaiko M.Z., Novikov I.Ya., “O beskonechno gladkikh pochti-vspleskakh s kompaktnym nositelem”, Mat. zametki, 56:3 (1994), 3–12 | DOI | MR
[5] Zakharov V.G., “Reproducing solutions to PDEs by scaling functions”, Int. J. Wavelets Multiresolut. Inf. Process, 19 (2020), 2050017 | DOI
[6] Subbotin Yu.N., Chernykh N.I., “Interpolyatsionno-ortogonalnye sistemy vspleskov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:3 (2008), 153–161 | DOI