Interpolating orthogonal wavelet bases are constructed with the use of several scaling functions. In the classical case, a basis of the space ${L}^2(\mathbb{R})$ is formed by shifts and compressions of a single function $\psi$. In contrast to the classical case, we consider several bases of the space $L^2(\mathbb{R})$, which are formed by shifts and compressions of $n$ functions $\psi^s$, $s=1,\ldots,n$. The $n$-separate wavelets constructed by the author earlier form $n$ orthonormal bases of the space $L^2(\mathbb{R})$. In 2008, Yu.Ṅ. Subbotin and N. I. Chernykh suggested a method for modifying the Meyer scaling function in such a way that the basis formed by it is simultaneously orthogonal and interpolating. In the present paper we propose a method for modifying the masks of $n$-separate scaling functions from a wide class in such a way that the resulting new scaling functions and wavelets remain orthogonal and at the same time become interpolating.
@article{TIMM_2022_28_4_a14,
author = {E. A. Pleshcheva},
title = {Interpolating orthogonal bases of n-separate {MRAs} and wavelets},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {154--163},
year = {2022},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a14/}
}
TY - JOUR
AU - E. A. Pleshcheva
TI - Interpolating orthogonal bases of n-separate MRAs and wavelets
JO - Trudy Instituta matematiki i mehaniki
PY - 2022
SP - 154
EP - 163
VL - 28
IS - 4
UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a14/
LA - ru
ID - TIMM_2022_28_4_a14
ER -
%0 Journal Article
%A E. A. Pleshcheva
%T Interpolating orthogonal bases of n-separate MRAs and wavelets
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 154-163
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a14/
%G ru
%F TIMM_2022_28_4_a14
E. A. Pleshcheva. Interpolating orthogonal bases of n-separate MRAs and wavelets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 154-163. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a14/