Interpolating orthogonal bases of n-separate MRAs and wavelets
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 154-163

Voir la notice de l'article provenant de la source Math-Net.Ru

Interpolating orthogonal wavelet bases are constructed with the use of several scaling functions. In the classical case, a basis of the space ${L}^2(\mathbb{R})$ is formed by shifts and compressions of a single function $\psi$. In contrast to the classical case, we consider several bases of the space $L^2(\mathbb{R})$, which are formed by shifts and compressions of $n$ functions $\psi^s$, $s=1,\ldots,n$. The $n$-separate wavelets constructed by the author earlier form $n$ orthonormal bases of the space $L^2(\mathbb{R})$. In 2008, Yu.Ṅ. Subbotin and N. I. Chernykh suggested a method for modifying the Meyer scaling function in such a way that the basis formed by it is simultaneously orthogonal and interpolating. In the present paper we propose a method for modifying the masks of $n$-separate scaling functions from a wide class in such a way that the resulting new scaling functions and wavelets remain orthogonal and at the same time become interpolating.
Keywords: orthogonal wavelet, interpolating wavelet, scaling function, basis, multiresolution analysis, mask of a scaling function, $n$-separate wavelet.
@article{TIMM_2022_28_4_a14,
     author = {E. A. Pleshcheva},
     title = {Interpolating orthogonal bases of n-separate {MRAs} and wavelets},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {154--163},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a14/}
}
TY  - JOUR
AU  - E. A. Pleshcheva
TI  - Interpolating orthogonal bases of n-separate MRAs and wavelets
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 154
EP  - 163
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a14/
LA  - ru
ID  - TIMM_2022_28_4_a14
ER  - 
%0 Journal Article
%A E. A. Pleshcheva
%T Interpolating orthogonal bases of n-separate MRAs and wavelets
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 154-163
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a14/
%G ru
%F TIMM_2022_28_4_a14
E. A. Pleshcheva. Interpolating orthogonal bases of n-separate MRAs and wavelets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 154-163. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a14/