On an Interpolation Problem with the Smallest $L_2$-Norm of the Laplace Operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 143-153
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to an interpolation problem for finite sets of real numbers bounded in the Euclidean norm. The interpolation is by a class of smooth functions of two variables with the minimum $L_{2}$-norm of the Laplace operator $\Delta=\partial^{2 }/\partial x^{2}+\partial^{2 }/\partial y^{2}$ applied to the interpolating functions. It is proved that if $N\geq 3$ and the interpolation points $\{(x_{j},y_{j})\}_{j=1}^{N}$ do not lie on the same straight line, then the minimum value of the $L_{2}$-norm of the Laplace operator on interpolants from the class of smooth functions for interpolated data from the unit ball of the space $l_{2}^{N}$ is expressed in terms of the largest eigenvalue of the matrix of a certain quadratic form.
Mots-clés :
interpolation
Keywords: Laplace operator, thin plate splines.
Keywords: Laplace operator, thin plate splines.
@article{TIMM_2022_28_4_a13,
author = {S. I. Novikov},
title = {On an {Interpolation} {Problem} with the {Smallest} $L_2${-Norm} of the {Laplace} {Operator}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {143--153},
publisher = {mathdoc},
volume = {28},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a13/}
}
TY - JOUR AU - S. I. Novikov TI - On an Interpolation Problem with the Smallest $L_2$-Norm of the Laplace Operator JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 143 EP - 153 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a13/ LA - ru ID - TIMM_2022_28_4_a13 ER -
S. I. Novikov. On an Interpolation Problem with the Smallest $L_2$-Norm of the Laplace Operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 143-153. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a13/