A Complete Description of the Relative Widths of Sobolev Classes in the Uniform Metric
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 137-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the width of the Sobolev class of $2\pi$-periodic functions with ${\|f^{(r)}\|_\infty\le 1}$ with respect to the set of functions $g$ such that $\|g^{(r)}\|_\infty\le M$ in the uniform metric $K_n:=K_n(W^r_\infty,MW^r_\infty,L_\infty)$. We prove a lower bound on $K_n$ for $M=1+\varepsilon$ with small $\varepsilon$. This bound together with earlier results completes the analysis of the behavior of $K_n$.
Keywords: Kolmogorov and relative widths.
@article{TIMM_2022_28_4_a12,
     author = {Yu. V. Malykhin},
     title = {A {Complete} {Description} of the {Relative} {Widths} of {Sobolev} {Classes} in the {Uniform} {Metric}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {137--142},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a12/}
}
TY  - JOUR
AU  - Yu. V. Malykhin
TI  - A Complete Description of the Relative Widths of Sobolev Classes in the Uniform Metric
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 137
EP  - 142
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a12/
LA  - ru
ID  - TIMM_2022_28_4_a12
ER  - 
%0 Journal Article
%A Yu. V. Malykhin
%T A Complete Description of the Relative Widths of Sobolev Classes in the Uniform Metric
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 137-142
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a12/
%G ru
%F TIMM_2022_28_4_a12
Yu. V. Malykhin. A Complete Description of the Relative Widths of Sobolev Classes in the Uniform Metric. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 137-142. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a12/

[1] Tikhomirov V.M., “Teoriya priblizhenii”, Analiz - 2, Itogi nauki i tekhniki. Ser. Sovremen. problemy matematiki. Fundament. napravleniya, 14, VINITI, M., 1987, 103–260

[2] Konovalov V.N., “Otsenki poperechnikov tipa Kolmogorova dlya klassov differentsiruemykh periodicheskikh funktsii”, Mat. zametki, 35:3 (1984), 369–380 | MR

[3] Subbotin Yu.N., Telyakovskii S.A., “Tochnye znacheniya otnositelnykh poperechnikov klassov differentsiruemykh funktsii”, Mat. zametki, 65:6 (1999), 871–879

[4] Tikhomirov V.M., “Some remarks on relative diameters”, Approximation and function spaces, Proc. 27th Semest. (Warsaw/Pol. 1986), Banach Center Publications, 22, no. 1, 1989, 471–474 | DOI | MR

[5] Babenko V.F., “O nailuchshikh ravnomernykh priblizheniyakh splainami pri nalichii ogranichenii na ikh proizvodnye”, Mat. zametki, 50:6 (1991), 24–30

[6] Malykhin Yu.V., “Otnositelnye poperechniki klassov Soboleva v ravnomernoi i integralnoi metrikakh”, Tr. MIAN, 293 (2016), 217–223

[7] DeVore R.A., Lorentz G.G., Constructive approximation, Springer, Berlin; Heidelberg, 1993, 452 pp. | DOI | MR

[8] Malykhin Yuri, Widths and rigidty, [e-resource], 2022, 33 pp., arXiv: 2205.03453

[9] Ismagilov R.S., “Ob $n$-mernykh poperechnikakh kompaktov v gilbertovom prostranstve”, Funktsionalnyi analiz i ego prilozheniya, 2:2 (1968), 32–39 | MR