@article{TIMM_2022_28_4_a11,
author = {A. O. Leont'eva},
title = {Bernstein{\textendash}Szeg\H{o} inequality for trigonometric polynomials in the space $L_0$ with a constant greater than classical},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {128--136},
year = {2022},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a11/}
}
TY - JOUR AU - A. O. Leont'eva TI - Bernstein–Szegő inequality for trigonometric polynomials in the space $L_0$ with a constant greater than classical JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 128 EP - 136 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a11/ LA - ru ID - TIMM_2022_28_4_a11 ER -
%0 Journal Article %A A. O. Leont'eva %T Bernstein–Szegő inequality for trigonometric polynomials in the space $L_0$ with a constant greater than classical %J Trudy Instituta matematiki i mehaniki %D 2022 %P 128-136 %V 28 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a11/ %G ru %F TIMM_2022_28_4_a11
A. O. Leont'eva. Bernstein–Szegő inequality for trigonometric polynomials in the space $L_0$ with a constant greater than classical. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 128-136. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a11/
[1] Arestov V. V., “O neravenstvakh S.N. Bernshteina dlya algebraicheskikh i trigonometricheskikh polinomov”, Dokl. AN SSSR, 246:6 (1979), 1289–1292 | MR
[2] Arestov V. V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. Matematicheskaya, 45:1 (1981), 3–22
[3] Arestov V. V., “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Mat. zametki, 48:4 (1990), 7–18 | MR
[4] Arestov V. V., “Neravenstvo Sege dlya proizvodnykh sopryazhennogo trigonometricheskogo polinoma v $L_0$”, Mat. zametki, 56:6 (1994), 10–26
[5] Arestov V. V., “Tochnye neravenstva dlya trigonometricheskikh polinomov otnositelno integralnykh funktsionalov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 38–53
[6] Arestov V. V., Glazyrina P. Yu., “Integralnye neravenstva dlya algebraicheskikh i trigonometricheskikh polinomov”, Dokl. AN, 442:6 (2012), 727–731
[7] Arestov V. V., Glazyrina P. Yu., “Neravenstvo Bernshteina - Sege dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Trudy In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 17–31 | MR
[8] Leonteva A. O., “Neravenstvo Bernshteina dlya proizvodnykh Veilya trigonometricheskikh polinomov v prostranstve $L_0$”, Mat. zametki, 104:2 (2018), 255–264 | DOI | MR
[9] Leonteva A. O., “Neravenstvo Bernshteina - Sege dlya proizvodnykh Veilya trigonometricheskikh polinomov v prostranstve $L_0$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:4 (2018), 199–207 | DOI
[10] Popov N. V., “Ob odnom integralnom neravenstve dlya trigonometricheskikh polinomov”, Sovremennye metody teorii funktsii i smezhnye problemy, Voronezh. zim. mat. shk. Voronezh. gos. un-t; Moskov. gos. un-t im. M.V. Lomonosova; Matematicheskii institut im. V.A. Steklova RAN, materialy Mezhdunar. konf. (28 yanvarya - 2 fevralya 2021 g.), Izdatelskii dom VGU, Voronezh, 2021, 334 pp.
[11] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 638 pp.
[12] Polia G., Sege G., Zadachi i teoremy iz analiza, v 2 t., v. 1, Nauka, M., 1978, 391 pp. ; т. 2, 431 с. | MR
[13] Khardi G.G., Littlvud Dzh.E., Polia G., Neravenstva, IL, M., 1948, 456 pp.
[14] Arestov V.V., Glazyrina P.Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR
[15] Erdélyi T., “Arestov's theorems on Bernstein's inequality”, J. Approx. Theory, 250 (2020), 105323 | DOI | MR
[16] Leont'eva A. O., “Bernstein–Szegő inequality for trigonometric polynomials in $L_p$, $0\le p\le\infty$, with the classical value of the best constant”, J. Approx. Theory, 276 (2022), 105713 | DOI | MR
[17] Weyl H., “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljahresschr. Naturforsch. Ges. Zürich, 62:1–2 (1917), 296–302 | MR