Bernstein–Szegő inequality for trigonometric polynomials in the space $L_0$ with a constant greater than classical
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 128-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the set $\mathscr{T}_n$ of trigonometric polynomials $f_n$ of order $n$ with complex coefficients, the Weyl derivative (fractional derivative) $f_n^{(\alpha)}$ of real nonnegative order $\alpha$ is considered. The exact constant $B_n(\alpha,\theta)_p$ in Bernstein–Szegő inequality $\|f_n^{(\alpha)}\cos\theta+\tilde{f}_n^{(\alpha)}\sin\theta \|_p\le B_n(\alpha,\theta)_p\|f_n\|_p$ is analyzed. Such inequalities have been studied for more than 90 years. It is known that, for $1\le p\le\infty$, $\alpha\ge 1$, and $\theta\in\mathbb R$, the constant takes the classical value $B_n(\alpha,\theta)_p=n^\alpha$. The case $p=0$ is of interest at least because the constant $B_n(\alpha,\theta)_0$ takes the maximum value in $p$ for $p\in[0,\infty]$. V. V. Arestov proved that, for $r\in\mathbb N$, the Bernstein inequality in $L_0$ holds with the constant $B_n(r,0)_0=n^r$, and the constant $B_n(\alpha,\pi/2)_0$ in the Szegő inequality in $L_0$ behaves as $4^{n+o(n)}$. V. V. Arestov in 1994 and V. V. Arestov and P. Yu. Glazyrina in 2014 studied the question of conditions on the parameters $n$ and $\alpha$ under which the constant in the Bernstein–Szegő inequality takes the classical value $n^\alpha$. Recently, the author has proved Arestov and Glazyrina's conjecture that the Bernstein–Szegő inequality holds with the constant $n^\alpha$ for $\alpha\ge 2n-2$ and all $\theta\in\mathbb R$. The question about the exactness of the bound $\alpha=2n-2$, more precisely, the question of the best constant for $\alpha2n-2$ remans open. In the present paper, we prove that for any $0\le\alpha$ one can find $\theta^*(\alpha)$ such that $B_n(\alpha, \theta^*(\alpha))_0>n^\alpha$.
Keywords: trigonometric polynomials, Weyl derivative, Bernstein–Szegő inequality, space $L_0$.
@article{TIMM_2022_28_4_a11,
     author = {A. O. Leont'eva},
     title = {Bernstein{\textendash}Szeg\H{o} inequality for trigonometric polynomials in the space $L_0$ with a constant greater than classical},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {128--136},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a11/}
}
TY  - JOUR
AU  - A. O. Leont'eva
TI  - Bernstein–Szegő inequality for trigonometric polynomials in the space $L_0$ with a constant greater than classical
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 128
EP  - 136
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a11/
LA  - ru
ID  - TIMM_2022_28_4_a11
ER  - 
%0 Journal Article
%A A. O. Leont'eva
%T Bernstein–Szegő inequality for trigonometric polynomials in the space $L_0$ with a constant greater than classical
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 128-136
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a11/
%G ru
%F TIMM_2022_28_4_a11
A. O. Leont'eva. Bernstein–Szegő inequality for trigonometric polynomials in the space $L_0$ with a constant greater than classical. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 128-136. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a11/

[1] Arestov V. V., “O neravenstvakh S.N. Bernshteina dlya algebraicheskikh i trigonometricheskikh polinomov”, Dokl. AN SSSR, 246:6 (1979), 1289–1292 | MR

[2] Arestov V. V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. Matematicheskaya, 45:1 (1981), 3–22

[3] Arestov V. V., “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Mat. zametki, 48:4 (1990), 7–18 | MR

[4] Arestov V. V., “Neravenstvo Sege dlya proizvodnykh sopryazhennogo trigonometricheskogo polinoma v $L_0$”, Mat. zametki, 56:6 (1994), 10–26

[5] Arestov V. V., “Tochnye neravenstva dlya trigonometricheskikh polinomov otnositelno integralnykh funktsionalov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 38–53

[6] Arestov V. V., Glazyrina P. Yu., “Integralnye neravenstva dlya algebraicheskikh i trigonometricheskikh polinomov”, Dokl. AN, 442:6 (2012), 727–731

[7] Arestov V. V., Glazyrina P. Yu., “Neravenstvo Bernshteina - Sege dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Trudy In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 17–31 | MR

[8] Leonteva A. O., “Neravenstvo Bernshteina dlya proizvodnykh Veilya trigonometricheskikh polinomov v prostranstve $L_0$”, Mat. zametki, 104:2 (2018), 255–264 | DOI | MR

[9] Leonteva A. O., “Neravenstvo Bernshteina - Sege dlya proizvodnykh Veilya trigonometricheskikh polinomov v prostranstve $L_0$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:4 (2018), 199–207 | DOI

[10] Popov N. V., “Ob odnom integralnom neravenstve dlya trigonometricheskikh polinomov”, Sovremennye metody teorii funktsii i smezhnye problemy, Voronezh. zim. mat. shk. Voronezh. gos. un-t; Moskov. gos. un-t im. M.V. Lomonosova; Matematicheskii institut im. V.A. Steklova RAN, materialy Mezhdunar. konf. (28 yanvarya - 2 fevralya 2021 g.), Izdatelskii dom VGU, Voronezh, 2021, 334 pp.

[11] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 638 pp.

[12] Polia G., Sege G., Zadachi i teoremy iz analiza, v 2 t., v. 1, Nauka, M., 1978, 391 pp. ; т. 2, 431 с. | MR

[13] Khardi G.G., Littlvud Dzh.E., Polia G., Neravenstva, IL, M., 1948, 456 pp.

[14] Arestov V.V., Glazyrina P.Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR

[15] Erdélyi T., “Arestov's theorems on Bernstein's inequality”, J. Approx. Theory, 250 (2020), 105323 | DOI | MR

[16] Leont'eva A. O., “Bernstein–Szegő inequality for trigonometric polynomials in $L_p$, $0\le p\le\infty$, with the classical value of the best constant”, J. Approx. Theory, 276 (2022), 105713 | DOI | MR

[17] Weyl H., “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljahresschr. Naturforsch. Ges. Zürich, 62:1–2 (1917), 296–302 | MR