On a Linear Group Pursuit Problem with Fractional Derivatives
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 129-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of pursuit of one evader by a group of pursuers is considered in a finite-dimensional Euclidean space. The dynamics is described by the system $$ D^{(\alpha_i)}z_i=A_iz_i+B_iu_i-C_iv, \quad u_i\in U_i,\quad v\in V, $$ where $D^{(\alpha)}f$ is the Caputo derivative of order $\alpha$ of a function $f$. The sets of admissible controls of the players are convex and compact. The terminal set consists of cylindrical sets $M_i$ of the form $M_i=M_i^1+M_i^2$, where $M_i^1$ is a linear subspace of the phase space and $M_i^2$ is a convex compact set from the orthogonal complement of $M_i^1$. We propose two approaches to solving the problem, which ensure the termination of the game in a certain guaranteed time in the class of quasi-strategies. In the first approach, the pursuers construct their controls so that the terminal sets “cover” the evader's uncertainty region. In the second approach, the pursuers construct their controls using resolving functions. The theoretical results are illustrated by model examples.
Keywords: differential game, group pursuit, pursuer, evader, fractional derivative.
@article{TIMM_2022_28_3_a9,
     author = {A. I. Machtakova and N. N. Petrov},
     title = {On a {Linear} {Group} {Pursuit} {Problem} with {Fractional} {Derivatives}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {129--141},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a9/}
}
TY  - JOUR
AU  - A. I. Machtakova
AU  - N. N. Petrov
TI  - On a Linear Group Pursuit Problem with Fractional Derivatives
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 129
EP  - 141
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a9/
LA  - ru
ID  - TIMM_2022_28_3_a9
ER  - 
%0 Journal Article
%A A. I. Machtakova
%A N. N. Petrov
%T On a Linear Group Pursuit Problem with Fractional Derivatives
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 129-141
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a9/
%G ru
%F TIMM_2022_28_3_a9
A. I. Machtakova; N. N. Petrov. On a Linear Group Pursuit Problem with Fractional Derivatives. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 129-141. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a9/

[1] Isaacs R., Differential games, John Wiley Sons, NY, 1965, 408 pp. | Zbl

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Pontryagin L.S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 575 pp.

[4] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 198 pp.

[5] Chikrii A.A., Konfliktno upravlyaemye protsessy, Naukova dumka, Kiev, 1992, 384 pp.

[6] Blagodatskikh A.I., Petrov N.N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp.

[7] Chikrii A.A., Matichin I.I., “Igrovye zadachi dlya lineinykh sistem drobnogo poryadka”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 262–278

[8] Gomoynov M.I., “Solution to a zero-sum differential game with fractional dynamics via approximations”, Dynamic Games and Applications, 10:2 (2020), 417–443 | DOI | MR

[9] Petrov N.N., “Group pursuit problem in a differential game with fractional derivatives, state constraints, and simple matrix”, Diff. Eq., 55:6 (2019), 841–848 | DOI | MR | Zbl

[10] Petrov N.N., Machtakova A.I., “Poimka dvukh skoordinirovannykh ubegayuschikh v zadache s drobnymi proizvodnymi, fazovymi ogranicheniyami i prostoi matritsei”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 56 (2020), 50–62 | Zbl

[11] Aubin J.P., Frankowska H., Set-Valued Analysis, Birkhauser, Boston, 1990, 461 pp. | MR | Zbl

[12] Chikrii A.A., Matichin I.I., “Ob analoge formuly Koshi dlya lineinykh sistem proizvolnogo drobnogo poryadka”, Dopovidi Natsionanoi akademii nauk Ukraini, 2007, no. 1, 50–55 | Zbl

[13] Petrov N.N., “Ob upravlyaemosti avtonomnykh sistem”, Differents. uravneniya, 4:4 (1968), 606–617 | Zbl