On a Linear Group Pursuit Problem with Fractional Derivatives
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 129-141
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A problem of pursuit of one evader by a group of pursuers is considered in a finite-dimensional Euclidean space. The dynamics is described by the system
$$ D^{(\alpha_i)}z_i=A_iz_i+B_iu_i-C_iv, \quad u_i\in U_i,\quad v\in V, $$
where $D^{(\alpha)}f$ is the Caputo derivative of order $\alpha$ of a function $f$. The sets of admissible controls of the players are convex and compact. The terminal set consists of cylindrical sets $M_i$ of the form $M_i=M_i^1+M_i^2$, where $M_i^1$ is a linear subspace of the phase space and $M_i^2$ is a convex compact set from the orthogonal complement of $M_i^1$. We propose two approaches to solving the problem, which ensure the termination of the game in a certain guaranteed time in the class of quasi-strategies. In the first approach, the pursuers construct their controls so that the terminal sets “cover” the evader's uncertainty region. In the second approach, the pursuers construct their controls using resolving functions. The theoretical results are illustrated by model examples.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
differential game, group pursuit, pursuer, evader, fractional derivative.
                    
                  
                
                
                @article{TIMM_2022_28_3_a9,
     author = {A. I. Machtakova and N. N. Petrov},
     title = {On a {Linear} {Group} {Pursuit} {Problem} with {Fractional} {Derivatives}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {129--141},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a9/}
}
                      
                      
                    TY - JOUR AU - A. I. Machtakova AU - N. N. Petrov TI - On a Linear Group Pursuit Problem with Fractional Derivatives JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 129 EP - 141 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a9/ LA - ru ID - TIMM_2022_28_3_a9 ER -
A. I. Machtakova; N. N. Petrov. On a Linear Group Pursuit Problem with Fractional Derivatives. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 129-141. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a9/
