Exact solutions of diffusion wave type for a nonlinear second-order parabolic equation with degeneration
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 114-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with a nonlinear evolutionary second-order parabolic equation with degeneration, which is a mathematical model for a number of physical and biological processes. We consider the problem of constructing and exploring exact solutions having the type of diffusion (heat, filtration) wave with a specified front. By applying a special kind of ansatz, their construction reduces to the integration of the Cauchy problem for an ordinary differential equation, which inherits the singularity of the original formulation. A three-stage approach is proposed to eliminate the singularity. At the first stage, the order of the equation is reduced by passing to the phase plane. Next, a solution is constructed in the form of a series in powers of a new independent variable, which previously was the original unknown function. Finally, the convergence of the series is proved by constructing a positive majorant. A special section is devoted to finding a constructive estimate of the convergence radius of the series. This estimate, in particular, shows that the radius is considerably different from zero. The proposed approach to the construction of estimates is highly adaptive, which allows us to improve the obtained estimates significantly if the input constants are specified.
Keywords: nonlinear parabolic equation, traveling wave, series
Mots-clés : diffusion wave, exact solutions, convergence.
@article{TIMM_2022_28_3_a8,
     author = {A. L. Kazakov and A. A. Lempert},
     title = {Exact solutions of diffusion wave type for a nonlinear second-order parabolic equation with degeneration},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {114--128},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a8/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - A. A. Lempert
TI  - Exact solutions of diffusion wave type for a nonlinear second-order parabolic equation with degeneration
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 114
EP  - 128
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a8/
LA  - ru
ID  - TIMM_2022_28_3_a8
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A A. A. Lempert
%T Exact solutions of diffusion wave type for a nonlinear second-order parabolic equation with degeneration
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 114-128
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a8/
%G ru
%F TIMM_2022_28_3_a8
A. L. Kazakov; A. A. Lempert. Exact solutions of diffusion wave type for a nonlinear second-order parabolic equation with degeneration. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 114-128. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a8/

[1] Zeldovich Ya.B., Raizer Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 1966, 632 pp.

[2] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 480 pp. | MR

[3] Andreev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachev V.V., Covremennye matematicheskie modeli konvektsii, Fizmatlit, M., 2008, 368 pp.

[4] Barenblatt G.I., Entov V.N., Ryzhik V.M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984, 211 pp.

[5] Vazquez J., The porous medium equation: Mathematical theory, Clarendon Press, Oxford, 2007, 624 pp. | DOI | MR

[6] Murray J.D., Mathematical biology II: Spatial models and biomedical applications, Interdisciplinary applied mathematics, 18, Springer, NY, 2003, 837 pp. | DOI | MR

[7] Grindrod P., Patterns and waves: Theory and applications of reaction-diffusion equations, Clarendon Press, NY, 1991, 239 pp. | MR | Zbl

[8] Stepanova I.V., “Group analysis of variable coefficients heat and mass transfer equations with power nonlinearity of thermal diffusivity”, Appl. Math. Comput., 343 (2019), 57–66 | DOI | MR | Zbl

[9] Bekezhanova V.B., Stepanova I.V., “Evaporation convection in two-layers binary mixtures: equations, structure of solution, study of gravity and thermal diffusion effects on the motion”, Appl. Math. Comput., 414 (2022), 126424 | DOI | MR | Zbl

[10] Cantrell R.S., Cosner C., Spatial ecology via reaction-diffusion equations, Wiley, Chichester, 2003, 432 pp. | MR | Zbl

[11] Perthame B., Parabolic equations in biology. Growth, reaction, movement and diffusion, Springer, NY, 2015, 211 pp. | DOI | MR | Zbl

[12] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 738 pp. | MR

[13] DiBenedetto E., Degenerate Parabolic Equations, Springer-Verlag, NY, 1993, 388 pp. | DOI | MR | Zbl

[14] Sidorov A.F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001, 576 pp. | MR

[15] Zeldovich Ya.B., Kompaneets A.S., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, Sbornik, posvyaschennyi 70-letiyu A.F. Ioffe, 1950, 61–71

[16] Vasin V.V., Sidorov A.F., “O nekotorykh metodakh priblizhennogo resheniya differentsialnykh i integralnykh uravnenii”, Izvestiya vuzov. Matematika, 1983, no. 7, 13–27 | Zbl

[17] Kurant R., Uravneniya s chastnymi proizvodnymi, v. 2, Mir, M., 1964, 830 pp.

[18] Filimonov M.Yu., “Ispolzovanie metoda spetsialnykh ryadov dlya predstavleniya reshenii nachalno-kraevykh zadach dlya nelineinykh uravnenii s chastnymi proizvodnymi”, Differents. uravneniya, 39:8 (2003), 1100–1107 | MR | Zbl

[19] Filimonov M.Yu., “Primenenie metoda spetsialnykh ryadov dlya postroeniya novykh klassov reshenii nelineinykh uravnenii s chastnymi proizvodnymi”, Differents. uravneniya, 39:6 (2003), 801–808 | MR | Zbl

[20] Filimonov M.Yu., “Representation of solutions of boundary value problems for nonlinear evolution equations by special series with recurrently calculated coefficients”, Journal of Physics: Conference Series, 1268 (2019), 012071 | DOI

[21] Kovrizhnykh O.O., “O postroenii asimptoticheskogo resheniya nelineinogo vyrozhdayuschegosya parabolicheskogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 43:10 (2003), 1487–1493 | MR | Zbl

[22] Bautin S.P., Eliseev A.A., “Mnogomernaya analiticheskaya teplovaya volna, opredelyaemaya kraevym rezhimom”, Differents. uravneniya, 42:8 (2006), 1052–1062 | MR | Zbl

[23] Kazakov A.L., Kuznetsov P.A., Spevak L.F., “Ob odnoi kraevoi zadache s vyrozhdeniem dlya nelineinogo uravneniya teploprovodnosti v sfericheskikh koordinatakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 119–129 | MR

[24] Kazakov A., Lempert A., “Diffusion-wave type solutions to the second-order evolutionary equation with power nonlinearities”, Mathematics, 10:2 (2022), 232 | DOI

[25] Kazakov A.L., Orlov S.S., “O nekotorykh tochnykh resheniyakh nelineinogo uravneniya teploprovodnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:1 (2016), 112–123 | MR

[26] Kazakov A.L., Lempert A.A., “Analiticheskoe i chislennoe issledovanie odnoi kraevoi zadachi nelineinoi filtratsii s vyrozhdeniem”, Vychisl. tekhnologii, 17:1 (2012), 57–68 | Zbl

[27] Kazakov A.L., Orlov Sv.S., Orlov S.S., “Postroenie i issledovanie nekotorykh tochnykh reshenii nelineinogo uravneniya teploprovodnosti”, Sib. mat. zhurn., 59:3 (2018), 544–560 | DOI | MR | Zbl

[28] Kazakov A.L., “O tochnykh resheniyakh kraevoi zadachi o dvizhenii teplovoi volny dlya uravneniya nelineinoi teploprovodnosti”, Sib. elektron. mat. izv., 16 (2019), 1057–1068 | DOI | Zbl

[29] Rubina L.I., Ulyanov O.N., “Ob odnom metode resheniya uravneniya nelineinoi teploprovodnosti”, Sib. mat. zhurn., 53:5 (2012), 1091–1101 | MR | Zbl

[30] Polyanin A.D., Zaitsev V.F., Zhurov A.I., Nelineinye uravneniya matematicheskoi fiziki i mekhaniki. Metody resheniya, Izd-vo Yurait, M., 2017, 256 pp.

[31] Kazakov A., “Solutions to nonlinear evolutionary parabolic equations of the diffusion wave type”, Symmetry, 13:5 (2021), 871 | DOI

[32] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov: Opredeleniya, teoremy, formuly, Lan, M., 2003, 832 pp.

[33] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Izd. 2-e, pererab. i dop., Nauka, M., 1978, 688 pp. | MR