On the Stability of Linear Time-Varying Differential Equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 94-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article discusses the stability of linear differential equations with time-varying coefficients. It is shown that, in contrast to equations with time-invariant coefficients, the condition for the characteristic polynomial to be Hurwitz for a linear differential equation with time-varying coefficients is neither necessary nor sufficient for the asymptotic stability of the differential equation. It is proved that the analog of Kharitonov's theorem on robust stability does not hold if the coefficients of the differential equation are time-varying.
Keywords: linear differential equations, stability, time-varying system, Kharitonov's theorem, robust stability.
Mots-clés : stable polynomial
@article{TIMM_2022_28_3_a7,
     author = {V. A. Zaitsev and I. G. Kim},
     title = {On the {Stability} of {Linear} {Time-Varying} {Differential} {Equations}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {94--113},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a7/}
}
TY  - JOUR
AU  - V. A. Zaitsev
AU  - I. G. Kim
TI  - On the Stability of Linear Time-Varying Differential Equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 94
EP  - 113
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a7/
LA  - ru
ID  - TIMM_2022_28_3_a7
ER  - 
%0 Journal Article
%A V. A. Zaitsev
%A I. G. Kim
%T On the Stability of Linear Time-Varying Differential Equations
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 94-113
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a7/
%G ru
%F TIMM_2022_28_3_a7
V. A. Zaitsev; I. G. Kim. On the Stability of Linear Time-Varying Differential Equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 94-113. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a7/

[1] Postnikov M.M., Ustoichivye mnogochleny, Editorial URSS, M., 2004, 176 pp.

[2] Bylov B.F., Vinograd R.E., Grobman D.M., Nemytskii V.V., Teoriya pokazatelei Lyapunova, Nauka, M., 1966, 576 pp.

[3] Coppel W.A., Dichotomies in stability theory, Springer, Berlin; Heidelberg, 1978, 97 pp. | DOI | MR | Zbl

[4] Wu M., “A note on stability of linear time-varying systems”, IEEE Transactions on Automatic Control, 19:2 (1974), 162 | DOI | MR

[5] Ilchmann A., Owens D.H., Prätzel-Wolters D., “Sufficient conditions for stability of linear time-varying systems”, Systems and Control Letters, 9:2 (1987), 157–163 | DOI | MR | Zbl

[6] Amato F., Celentano G., Garofalo F., “New sufficient conditions for the stability of slowly varying linear systems”, IEEE Transactions on Automatic Control, 38:9 (1993), 1409–1411 | DOI | MR | Zbl

[7] Solo V., “On the stability of slowly time-varying linear systems”, Mathematics of Control, Signals, and Systems, 7:4 (1994), 331–350 | DOI | MR | Zbl

[8] Levin A.Yu., “Absolyutnaya neostsillyatsionnaya ustoichivost i smezhnye voprosy”, Algebra i analiz, 4:1 (1992), 154–166

[9] Wan J.-M., “Explicit solution and stability of linear time-varying differential state space systems”, Internat. J. Control Automat. Syst., 15:4 (2017), 1553–1560 | DOI

[10] Vrabel R., “A note on uniform exponential stability of linear periodic time-varying systems”, IEEE Transactions on Automatic Control, 65:4 (2020), 1647–1651 | DOI | MR | Zbl

[11] Yakubovich V.A., Starzhinskii V.M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972, 720 pp. | MR

[12] Kharitonov V.L., “Ob asimptoticheskoi ustoichivosti polozheniya ravnovesiya semeistva sistem lineinykh differentsialnykh uravnenii”, Differents. uravneniya, 14:11 (1978), 2086–2088 | MR | Zbl

[13] Bhattacharyya S.P., Chapellat H., Keel L.H., Robust contol. The parametric approach, Prentice Hall PTR, Upper Saddle, NJ, 1995, 648 pp.

[14] Demidovich B.P., Lektsii po matematicheskoi teorii ustoichivosti, Lan, SPb., 2008, 480 pp. | MR

[15] Sastry Sh., Nonlinear systems. Analysis, stability, and control, Springer, NY: Berlin: Heidelberg, 1999, 667 pp. | Zbl

[16] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980, 300 pp. | MR

[17] Zaitsev V., Kim I., “Exponential stabilization of linear time-varying differential equations with uncertain coefficients by linear stationary feedback”, Mathematics, 8:5 (2020), 853 | DOI | MR