On the set of necessary optimality conditions with positional controls generated by weakly decreasing solutions of the Hamilton-Jacobi inequality
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 83-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Any weakly decreasing solution of the Hamilton–Jacobi inequality generates a so-called accessory problem of dynamic optimization over Krasovskii–Subbotin constructive motions (Euler curves) produced by extremal feedback control strategies. We derive conditions under which an optimal trajectory of the considered Mayer optimal control problem is a minimizer of the accessory problem for a fixed majorant — a certain solution of the Hamilton–Jacobi inequality. The result is formulated in terms of the compatibility of the latter solution with an optimal trajectory. In the general case of a nonsmooth majorant (and a nonsmooth problem), the optimality condition means that there is a component of the proximal subdifferential of the majorant along the optimal trajectory that coincides with a certain solution of an adjoint inclusion arising in the maximum principle of Kaskosz and Łojasiewicz. This implies the general feedback minimum principle — a global necessary optimality condition, which strengthens all known formulations of the maximum principle for problems without terminal constraints.
Keywords: extremals, feedback controls, weakly decreasing functions, feedback minimum principle.
@article{TIMM_2022_28_3_a6,
     author = {V. A. Dykhta},
     title = {On the set of necessary optimality conditions with positional controls generated by weakly decreasing solutions of the {Hamilton-Jacobi} inequality},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {83--93},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a6/}
}
TY  - JOUR
AU  - V. A. Dykhta
TI  - On the set of necessary optimality conditions with positional controls generated by weakly decreasing solutions of the Hamilton-Jacobi inequality
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 83
EP  - 93
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a6/
LA  - ru
ID  - TIMM_2022_28_3_a6
ER  - 
%0 Journal Article
%A V. A. Dykhta
%T On the set of necessary optimality conditions with positional controls generated by weakly decreasing solutions of the Hamilton-Jacobi inequality
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 83-93
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a6/
%G ru
%F TIMM_2022_28_3_a6
V. A. Dykhta. On the set of necessary optimality conditions with positional controls generated by weakly decreasing solutions of the Hamilton-Jacobi inequality. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 83-93. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a6/

[1] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., “Qualitative properties of trajectories of control systems: A survey”, J. Dyn. Control Syst., 1:1 (1995), 1–48 | DOI | MR | Zbl

[2] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and control theory, Springer-Verlag, N.Y., 1998, 276 pp. | MR | Zbl

[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Fizmatlit, M., 1974, 456 pp. | MR

[4] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, In-t kompyut. issledovanii, M.; Izhevsk, 2003, 336 pp.

[5] Clarke F., Ledyaev Yu.S., Subbotin A.I., “Universal positional control and proximal aiming in control problems under perturbations and in differential games”, Proc. Steklov Inst. Math., 224:1 (1999), 149–168 | MR | Zbl

[6] Dykhta V.A., “Slabo monotonnye resheniya neravenstva Gamiltona - Yakobi i usloviya optimalnosti s pozitsionnymi upravleniyami”, Avtomatika i telemekhanika, 2014, no. 5, 31–49 | Zbl

[7] Dykhta V.A., “Nestandartnaya dvoistvennost i nelokalnye neobkhodimye usloviya optimalnosti v nevypuklykh zadachakh optimalnogo upravleniya”, Avtomatika i telemekhanika, 2014, no. 11, 19–37 | Zbl

[8] Dykhta V.A., “Variatsionnye neobkhodimye usloviya optimalnosti s pozitsionnymi upravleniyami spuska v zadachakh optimalnogo upravleniya”, Dokl. AN, 462:6 (2015), 653–656 | Zbl

[9] Dykhta V.A., “Approximate feedback minimum principle for suboptimal processes in non-smooth optimal control problems”, Proc. Int. Conf. “Stability, Control and Differential Games” (SCDG2019), Springer, Cham, 2020, 127–132 | DOI | MR | Zbl

[10] Kaśkosz B., Lojasiewicz S., “A maximum principle for generalized control”, Nonlinear Analysis: Theory, Methods Appl., 9:2 (1985), 109–130 | DOI | MR | Zbl

[11] Kaśkosz B., “Extremality, controllability, and abundant subsets of generalized control systems”, J. Optim. Theory Appl., 101:1 (1999), 73–108 | DOI | MR | Zbl

[12] Frankowska H., Kaśkosz B., “Linearization and boundary trajectories of nonsmooth control systems”, Can. J. Math., XI:3 (1988), 589–609 | DOI | MR

[13] Sussmann H., “A strong version of the Lojasiewicz maximum principle”, Optimal Control of Differential Equations, Lecture Notes in Pure and Applied Mathematics, ed. N.H. Pavel, M. Dekker Ink., N.Y., 1994, 1–17 | MR

[14] Loewen P.D., Vinter R.B., “Pontryagin-type necessary conditions for differential inclusion problems”, Systems Control Lett., 9:9 (1997), 263–265 | DOI | MR

[15] Artstein Z., “Pontryagin maximum principle revisited with feedbacks”, Eur. J. Control, 17:1 (2011), 46–54 | DOI | MR | Zbl

[16] Dykhta V.A., Samsonyuk O.N., Neravenstva Gamiltona - Yakobi i variatsionnye usloviya optimalnosti, Izd-vo IGU, Irkutsk, 2015, 150 pp.

[17] Dykhta V.A., “Pozitsionnye usileniya printsipa maksimuma i dostatochnye usloviya optimalnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 73–86

[18] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR

[19] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990, 461 pp. | MR | Zbl

[20] Bardi M., Cappuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton - Jakobi - Bellman equations, Birkhäuser, Boston, 1997, 570 pp. | MR