@article{TIMM_2022_28_3_a5,
author = {N. M. Dmitruk},
title = {Multiply {Closed} {Control} {Strategy} in a {Linear} {Terminal} {Problem} of {Optimal} {Guaranteed} {Control}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {66--82},
year = {2022},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a5/}
}
TY - JOUR AU - N. M. Dmitruk TI - Multiply Closed Control Strategy in a Linear Terminal Problem of Optimal Guaranteed Control JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 66 EP - 82 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a5/ LA - ru ID - TIMM_2022_28_3_a5 ER -
N. M. Dmitruk. Multiply Closed Control Strategy in a Linear Terminal Problem of Optimal Guaranteed Control. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 66-82. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a5/
[1] Witsenhausen H., “A minimax control problem for sampled linear systems”, IEEE Transactions on Automatic Control, 13:1 (1968), 5–21 | DOI | MR
[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1978, 392 pp.
[3] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 520 pp. | MR
[4] Lee J.H., Yu Z., “Worst-case formulations of model predictive control for systems with bounded parameters”, Automatica, 33:5 (1997), 763–781 | DOI | MR | Zbl
[5] Bemporad A., Borrelli F., Morari M., “Min-max control of constrained uncertain discrete-time linear systems”, IEEE Transactions on Automatic Control, 48:9 (2003), 1600–1606 | DOI | MR | Zbl
[6] Goulart P.J., Kerrigan E.C., Maciejowski J.M., “Optimization over state feedback policies for robust control with constraints”, Automatica, 42:4 (2006), 523–533 | DOI | MR | Zbl
[7] Gabasov R., Kirillova F.M., Kostina E.A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. I. Odnokratnoe zamykanie”, Avtomatika i telemekhanika, 1996, no. 7, 121–130 | Zbl
[8] Gabasov R., Kirillova F.M., Kostina E.A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. II. Mnogokratno zamykaemye obratnye svyazi”, Avtomatika i telemekhanika, 1996, no. 8, 90–99 | Zbl
[9] Balashevich N.V., Gabasov R., Kirillova F.M., “Postroenie optimalnykh obratnykh svyazei po matematicheskim modelyam s neopredelennostyu”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 265–286 | MR | Zbl
[10] Kostyukova O., Kostina E., “Robust optimal feedback for terminal linear-quadratic control problems under disturbances”, Mathematical Programming, 107:1–2 (2006), 131–153 | DOI | MR | Zbl
[11] Kostina E., Kostyukova O., “Worst-case control policies for (terminal) linear-quadratic control problems under disturbances”, Int. J. Robust Nonlinear Control, 19:17 (2009), 1940–1958 | DOI | MR | Zbl
[12] Chong K., Kostyukova O., Kurdina M., “Guaranteed control policy with arbitrary set of correction points for linear-quadratic system with delay”, Control and Cybernetics, 39:3 (2010), 739–768 | MR | Zbl
[13] Dmitruk N.M., “Optimalnaya strategiya s odnim momentom zamykaniya v lineinoi zadache optimalnogo garantirovannogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 58:2 (2018), 664–681 | Zbl
[14] Kastsiukevich D.A., Dmitruk N.M., “A method for constructing an optimal control strategy in a linear terminal problem”, J. the Belarusian State University. Mathematics and Informatics, 2021, no. 2, 38–50 | DOI | MR
[15] Boyd S., Vandenberghe L., Convex Optimization, Cambridge Uni. Press, NY, 2004, 716 pp. | MR | Zbl
[16] Gal T., Postoptimal analyses, parametric programming and related topics, De Gruyter, Berlin, 1995, 437 pp. | DOI | MR
[17] Borrelli F., Constrained optimal control for hybrid systems, Springer, Berlin Heidelberg, 2003, 206 pp.