Multiply Closed Control Strategy in a Linear Terminal Problem of Optimal Guaranteed Control
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 66-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper deals with an optimal control problem for a linear discrete system with disturbances. It is required to steer the system robustly to a given terminal set in a finite time while minimizing the guaranteed value of a terminal cost function. A multiply closed control strategy is introduced under the assumption that, at several future time instants, the state of the system is measured exactly and the control input is corrected. An efficient numerical method for constructing a suboptimal multiply closed strategy is proposed. The results of numerical experiments show an improvement in the performance under the optimal control strategy when the number of closing instants increases as well as in comparison to the optimal open-loop worst-case control while maintaining comparable computation times.
Keywords: linear system, disturbances, robust optimal control, control strategy, algorithm.
@article{TIMM_2022_28_3_a5,
     author = {N. M. Dmitruk},
     title = {Multiply {Closed} {Control} {Strategy} in a {Linear} {Terminal} {Problem} of {Optimal} {Guaranteed} {Control}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {66--82},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a5/}
}
TY  - JOUR
AU  - N. M. Dmitruk
TI  - Multiply Closed Control Strategy in a Linear Terminal Problem of Optimal Guaranteed Control
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 66
EP  - 82
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a5/
LA  - ru
ID  - TIMM_2022_28_3_a5
ER  - 
%0 Journal Article
%A N. M. Dmitruk
%T Multiply Closed Control Strategy in a Linear Terminal Problem of Optimal Guaranteed Control
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 66-82
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a5/
%G ru
%F TIMM_2022_28_3_a5
N. M. Dmitruk. Multiply Closed Control Strategy in a Linear Terminal Problem of Optimal Guaranteed Control. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 66-82. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a5/

[1] Witsenhausen H., “A minimax control problem for sampled linear systems”, IEEE Transactions on Automatic Control, 13:1 (1968), 5–21 | DOI | MR

[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1978, 392 pp.

[3] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 520 pp. | MR

[4] Lee J.H., Yu Z., “Worst-case formulations of model predictive control for systems with bounded parameters”, Automatica, 33:5 (1997), 763–781 | DOI | MR | Zbl

[5] Bemporad A., Borrelli F., Morari M., “Min-max control of constrained uncertain discrete-time linear systems”, IEEE Transactions on Automatic Control, 48:9 (2003), 1600–1606 | DOI | MR | Zbl

[6] Goulart P.J., Kerrigan E.C., Maciejowski J.M., “Optimization over state feedback policies for robust control with constraints”, Automatica, 42:4 (2006), 523–533 | DOI | MR | Zbl

[7] Gabasov R., Kirillova F.M., Kostina E.A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. I. Odnokratnoe zamykanie”, Avtomatika i telemekhanika, 1996, no. 7, 121–130 | Zbl

[8] Gabasov R., Kirillova F.M., Kostina E.A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. II. Mnogokratno zamykaemye obratnye svyazi”, Avtomatika i telemekhanika, 1996, no. 8, 90–99 | Zbl

[9] Balashevich N.V., Gabasov R., Kirillova F.M., “Postroenie optimalnykh obratnykh svyazei po matematicheskim modelyam s neopredelennostyu”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 265–286 | MR | Zbl

[10] Kostyukova O., Kostina E., “Robust optimal feedback for terminal linear-quadratic control problems under disturbances”, Mathematical Programming, 107:1–2 (2006), 131–153 | DOI | MR | Zbl

[11] Kostina E., Kostyukova O., “Worst-case control policies for (terminal) linear-quadratic control problems under disturbances”, Int. J. Robust Nonlinear Control, 19:17 (2009), 1940–1958 | DOI | MR | Zbl

[12] Chong K., Kostyukova O., Kurdina M., “Guaranteed control policy with arbitrary set of correction points for linear-quadratic system with delay”, Control and Cybernetics, 39:3 (2010), 739–768 | MR | Zbl

[13] Dmitruk N.M., “Optimalnaya strategiya s odnim momentom zamykaniya v lineinoi zadache optimalnogo garantirovannogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 58:2 (2018), 664–681 | Zbl

[14] Kastsiukevich D.A., Dmitruk N.M., “A method for constructing an optimal control strategy in a linear terminal problem”, J. the Belarusian State University. Mathematics and Informatics, 2021, no. 2, 38–50 | DOI | MR

[15] Boyd S., Vandenberghe L., Convex Optimization, Cambridge Uni. Press, NY, 2004, 716 pp. | MR | Zbl

[16] Gal T., Postoptimal analyses, parametric programming and related topics, De Gruyter, Berlin, 1995, 437 pp. | DOI | MR

[17] Borrelli F., Constrained optimal control for hybrid systems, Springer, Berlin Heidelberg, 2003, 206 pp.