Anisotropy and spectral entropy: Axiomatic approach
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 53-65
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Real-life dynamic systems operate under various disturbances and are affected by unknown external influences. That is why the problem of perturbation suppression is an extremely important branch of control theory. An effective approach to solving this problem is the anisotropic theory of stochastic robust control. Unfortunately, this theory has fundamental limitations — it is applicable only to discrete stochastic systems and only to stationary Gaussian sequences. Recently, attempts have been made to transfer the concepts of anisotropic theory to systems with continuous time. In this paper, the results of anisotropic theory are extended to arbitrary random signals, including both sequences with finite $l_2$ or power norm and sequences with arbitrary growth rate.
Keywords: linear systems, anisotropy, spectral entropy, $\sigma$-entropy norm.
@article{TIMM_2022_28_3_a4,
     author = {V. A. Boichenko},
     title = {Anisotropy and spectral entropy: {Axiomatic} approach},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {53--65},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a4/}
}
TY  - JOUR
AU  - V. A. Boichenko
TI  - Anisotropy and spectral entropy: Axiomatic approach
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 53
EP  - 65
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a4/
LA  - ru
ID  - TIMM_2022_28_3_a4
ER  - 
%0 Journal Article
%A V. A. Boichenko
%T Anisotropy and spectral entropy: Axiomatic approach
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 53-65
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a4/
%G ru
%F TIMM_2022_28_3_a4
V. A. Boichenko. Anisotropy and spectral entropy: Axiomatic approach. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 53-65. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a4/

[1] Kalman R.E., “Ob obschei teorii sistem upravleniya”, Tr. Mezhdunar. kongressa IFAK, v. 2, AN SSSR, M., 1961, 521–547

[2] Letov A.M., “Analiticheskoe konstruirovanie regulyatorov I-IV”, Avtomatika i telemekhanika, 21:4 (1960), 436-441 ; 21:5, 561-568 ; 21:6, 661–665 ; 22:4 (1961), 425-435 | Zbl | Zbl | Zbl | MR | Zbl

[3] Zames G., “Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses”, IEEE Trans. Autom. Control, 26:2 (1981), 301–320 | DOI | MR | Zbl

[4] Semyonov A.V., Vladimirov I.G., Kurdjukov A.P., “Stochastic approach to $\mathcal{H}_\infty$-optimization”, Proc. 33rd IEEE Conference on Decision and Control (Florida USA), IEEE, NY, 1994, 2249–2250 | DOI

[5] Vladimirov I.G., Kurdyukov A.P., Semenov A.V., “Anizotropiya signalov i entropiya lineinykh statsionarnykh sistem”, Dokl. AN SSSR, 342:5 (1995), 583–585 | MR | Zbl

[6] Kurdyukov A.P., Andrianova O.G., Belov A.A., Goldin D.A., “Mezhdu $LQG/\mathcal{H}_2$ i $\mathcal{H}_\infty$ teoriyami upravleniya”, Avtomatika i telemekhanika, 2021, no. 4, 8–76 | DOI | Zbl

[7] Boichenko V.A., Belov A.A., “On $\sigma$-entropy analysis of linear stochastic systems in state space”, System Theory, Control Comput. J., 1:1 (2021), 30–35 | DOI | MR

[8] Kurdyukov A.P., Boichenko V.A., “The spectral method of the analysis of linear control systems”, Int. J. Appl. Math. Comput. Science, 29:4 (2019), 667–679 | DOI | MR | Zbl

[9] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 408 pp.

[10] Maltsev A.I., Algebraicheskie sistemy, Nauka, M., 1970, 392 pp. | MR

[11] Zhou K., Glover K., Bodenheimer B., Doyle J., “Mixed $\mathcal{H}_2$ and $\mathcal{H}_\infty$ performance objectives I: Robust performance analysis”, IEEE Trans. Autom. Control, 39:8 (1994), 1564–1574 | DOI | MR | Zbl

[12] Gu D.-W., Tsai M.C., O'Young S.D., Postlethwaite I., “State-space formulae for discrete-time $\mathcal{H}_\infty$ optimization”, Int. J. Contr., 49:5 (1989), 1683–1723 | DOI | MR | Zbl

[13] Tsai M.C., “On discrete spectral factorizations - A unify approach”, IEEE Trans. Autom. Control, 38:10 (1993), 1563–1567 | DOI | MR | Zbl

[14] Bernstein D.S., Matrix mathematics, Princeton University Press, New Jersey, 2005, 726 pp. | MR | Zbl