Problems of Boundary Control and Optimal Control of String Vibrations with Multipoint Intermediate Conditions on the State Functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 38-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the string vibration equation with given initial and final conditions, the problems of boundary control and optimal control with given various multipoint intermediate conditions on the values of the deflection function and on the velocities of points of the string are considered. The control is performed both by displacement of one end with the other end fixed and by displacement at the two ends. The performance index is given for the whole time interval. Using the method of separation of variables, the problem is reduced to the problem of control and optimal control of ordinary differential equations with given initial, final, and unseparated multipoint intermediate conditions. For all problems according to a single scheme using methods of control theory for finite-dimensional systems with multipoint intermediate conditions, a constructive approach is proposed for finding functions of boundary control and optimal control of string vibrations that ensure the fulfillment of multipoint intermediate conditions.
Keywords: string vibrations, boundary control, vibration control, optimal control of vibrations, multipoint intermediate conditions.
@article{TIMM_2022_28_3_a3,
     author = {V. R. Barseghyan},
     title = {Problems of {Boundary} {Control} and {Optimal} {Control} of {String} {Vibrations} with {Multipoint} {Intermediate} {Conditions} on the {State} {Functions}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {38--52},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a3/}
}
TY  - JOUR
AU  - V. R. Barseghyan
TI  - Problems of Boundary Control and Optimal Control of String Vibrations with Multipoint Intermediate Conditions on the State Functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 38
EP  - 52
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a3/
LA  - ru
ID  - TIMM_2022_28_3_a3
ER  - 
%0 Journal Article
%A V. R. Barseghyan
%T Problems of Boundary Control and Optimal Control of String Vibrations with Multipoint Intermediate Conditions on the State Functions
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 38-52
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a3/
%G ru
%F TIMM_2022_28_3_a3
V. R. Barseghyan. Problems of Boundary Control and Optimal Control of String Vibrations with Multipoint Intermediate Conditions on the State Functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 38-52. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a3/

[1] Butkovskii A.G., Metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975, 568 pp. | MR

[2] Znamenskaya L.N., Upravlenie uprugimi kolebaniyami, Fizmatlit, M., 2004, 176 pp.

[3] Ilin V.A., Moiseev E.I., “Optimizatsiya granichnykh upravlenii kolebaniyami struny”, Uspekhi mat. nauk, 60:6 (366) (2005), 89–114 | MR

[4] Moiseev E.I., Kholomeeva A.A., Frolov A.A., “Granichnoe upravlenie smescheniem protsessom kolebanii pri granichnom uslovii tipa tormozheniya za vremya, menshee kriticheskogo”, Itogi nauki i tekhniki, materialy Mezhdunar. konf. “International Conference on Mathematical Modelling in Applied Sciences, ICMMAS-17” (S.-Peterb. politekhn. un-t, 24-28 iyulya 2017 g.), Ser. Sovremennaya matematika i ee prilozheniya. Temat. obzor, no. 160, VINITI RAN, M., 2019, 74–84

[5] Abdukarimov M.F., “Ob optimalnom granichnom upravlenii smescheniyami protsessa vynuzhdennykh kolebanii na dvukh kontsakh struny”, Dokl. AN Respubliki Tadzhikistan, 56:8 (2013), 612–618 | MR

[6] Kopets M.M., “Zadacha optimalnogo upravleniya protsessom kolebaniya struny”, Teoriya optimalnykh reshenii, Izd-vo In-ta kibernetiki im. V. M. Glushkova NAN Ukrainy, Kiev, 2014, 32–38

[7] Zuazua E., Controllability of partial differential equations, Universidad Autonoma, Madrid, 2002, 311 pp.

[8] Andreev A.A., Leksina S.V., “Zadacha granichnogo upravleniya dlya sistemy volnovykh uravnenii”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2008, no. 1(16), 5–10 | Zbl

[9] Barsegyan V.R., “Zadacha optimalnogo upravleniya kolebaniyami struny s nerazdelennymi usloviyami na funktsii sostoyaniya v zadannye promezhutochnye momenty vremeni”, Avtomatika i telemekhanika, 2020, no. 2, 36–47 | Zbl

[10] Barseghyan V.R., “The Problem of Optimal Control of String Vibrations”, International Applied Mechanics, 56:4 (2020), 471–480 | DOI | MR

[11] Barseghyan V.R., Solodusha S.V., “On one boundary control problem of string vibrations with given velocity of points at an intermediate moment of time”, J. Phys.: Conf. Ser., 1847 (2021), 012016 | DOI | MR

[12] Barseghyan V.R., Solodusha S.V., “Control of String Vibrations by Displacement of One End with the Other End Fixed, Given the Deflection Form at an Intermediate Moment of Time”, Axioms, 11:4 (2022), 157 | DOI | MR

[13] Barseghyan V.R., “Control problem of string vibrations with inseparable multipoint conditions at intermediate points in time”, Mechanics of Solids, 54:8 (2019), 1216–1226 | DOI

[14] Barseghyan V.R., Solodusha S.V., “Optimal boundary control of string vibrations with given shape of deflection at a certain moment of time”, Mathematical Optimization Theory and Operations Research, Proc. 20th Internat. Conf., MOTOR 2021 (Irkutsk, Russia, July 5-10, 2021), Lecture Notes in Computer Science, 12755, 299–313 | DOI | MR | Zbl

[15] Korzyuk V.I., Kozlovskaya I.S., “Dvukhtochechnaya granichnaya zadacha dlya uravneniya kolebaniya struny s zadannoi skorostyu v nekotoryi moment vremeni. I”, Tr. In-ta matematiki NAN Belarusi, 18:2 (2010), 22–35 | Zbl

[16] Korzyuk V.I., Kozlovskaya I.S., “Dvukhtochechnaya granichnaya zadacha dlya uravneniya kolebaniya struny s zadannoi skorostyu v nekotoryi moment vremeni. II”, Tr. In-ta matematiki NAN Belarusi, 19:1 (2011), 62–70 | MR | Zbl

[17] Barsegyan V.R., Upravlenie sostavnykh dinamicheskikh sistem i sistem s mnogotochechnymi promezhutochnymi usloviyami, Nauka, M., 2016, 230 pp.

[18] Zubov V.I., Lektsii po teorii upravleniya, Nauka, M., 1975, 496 pp.

[19] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.