On the reduction of systems with incommensurate delays to a form with zero dynamics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 30-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A form with zero dynamics for time-delay systems is considered. The results obtained earlier for the case of commensurate delays are transferred to systems with incommensurate delays. Conditions are obtained under which the reduction to such a form is possible, and an algorithm for constructing the corresponding transformation is described.
Keywords: time-delay systems, incommensurate delays, zero dynamics.
@article{TIMM_2022_28_3_a2,
     author = {E. I. Atamas' and A. V. Il'in},
     title = {On the reduction of systems with incommensurate delays to a form with zero dynamics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--37},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a2/}
}
TY  - JOUR
AU  - E. I. Atamas'
AU  - A. V. Il'in
TI  - On the reduction of systems with incommensurate delays to a form with zero dynamics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 30
EP  - 37
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a2/
LA  - ru
ID  - TIMM_2022_28_3_a2
ER  - 
%0 Journal Article
%A E. I. Atamas'
%A A. V. Il'in
%T On the reduction of systems with incommensurate delays to a form with zero dynamics
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 30-37
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a2/
%G ru
%F TIMM_2022_28_3_a2
E. I. Atamas'; A. V. Il'in. On the reduction of systems with incommensurate delays to a form with zero dynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 30-37. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a2/

[1] Korovin S.K., Fomichev V.V., Nablyudateli sostoyaniya dlya lineinykh sistem s neopredelennostyu, Fizmatlit, M., 2007, 224 pp.

[2] Atamas E.I., Ilin A.V., Fomichev V.V., “Obraschenie vektornykh sistem s zapazdyvaniem”, Differents. uravneniya, 49:11 (2013), 1363–1369 | DOI | MR | Zbl

[3] Isidori A., “The zero dynamics of a nonlinear system: From the origin to the latest progresses of a long successful story”, European J. Control, 19:5 (2013), 369–378 | DOI | MR | Zbl

[4] Zeng, C., Liang, S., Li, H., “Asymptotic properties of zero dynamics for nonlinear discretized systems with time delay via Taylor method”, Nonlinear Dynamics, 79:2 (2015), 1481–1493 | DOI | MR | Zbl

[5] Conte G., Perdon A. M., “A notion of zero dynamics for linear time-delay system”, IFAC Proc. Volumes, 41:2 (2008), 1255–1260 | DOI | MR

[6] Bejarano F.B., “Zero dynamics normal form and disturbance decoupling of commensurate and distributed time-delay systems”, Automatica, 129 (2021), 109634 | DOI | MR | Zbl

[7] Ilin A.V., Atamas E.I., Fomichev V.V., “O privedenii sistem s zapazdyvaniem k forme s vydeleniem nulevoi dinamiki.”, Dokl. AN, 480:1 (2018), 11–15 | DOI | MR | Zbl

[8] Morse A.S., “Ring models for delay-differential systems”, Automatica, 12:5 (1976), 529–531 | DOI | MR | Zbl

[9] Fomichev V. V., Kraev A. V., Rogovskii A. I., “O privedenii sistem k vidu s otnositelnym poryadkom metodom dinamicheskogo preobrazovaniya vykhodov”, Differents. uravneniya, 53:5 (2017), 693–705 | DOI | Zbl

[10] Fabianska A., Quadrat A., “Applications of the Quillen-Suslin theorem to multidimensional systems theory”, Grobner Bases in Control Theory and Signal Processing, De Gruyter, Berlin; Boston, 2011, 23-106 | DOI | MR