@article{TIMM_2022_28_3_a19,
author = {N. Huseyin and A. Huseyin and Kh. G. Guseinov},
title = {On the properties of the set of trajectories of nonlinear control systems with integral constraints on the control functions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {274--284},
year = {2022},
volume = {28},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a19/}
}
TY - JOUR AU - N. Huseyin AU - A. Huseyin AU - Kh. G. Guseinov TI - On the properties of the set of trajectories of nonlinear control systems with integral constraints on the control functions JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 274 EP - 284 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a19/ LA - en ID - TIMM_2022_28_3_a19 ER -
%0 Journal Article %A N. Huseyin %A A. Huseyin %A Kh. G. Guseinov %T On the properties of the set of trajectories of nonlinear control systems with integral constraints on the control functions %J Trudy Instituta matematiki i mehaniki %D 2022 %P 274-284 %V 28 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a19/ %G en %F TIMM_2022_28_3_a19
N. Huseyin; A. Huseyin; Kh. G. Guseinov. On the properties of the set of trajectories of nonlinear control systems with integral constraints on the control functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 274-284. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a19/
[1] Buzikov M.E, Galyaev A.A., “Time-optimal interception of a moving target by a Dubins car”, Autom. Remote Control, 82:5 (2021), 745–758 | DOI | MR | Zbl
[2] Chentsov A.G., “An abstract problem on attainability: the “purely asymptotic” version”, Tr. Inst. Mat. Mekh. UrO RAN, 21:2 (2015), 289-305 (in Russian) | MR
[3] Chernous'ko F.L., Ovseevich A.L., “Properties of ellipsoids approximating attainable sets”, Dokl. Math., 67:1 (2003), 123–126 | Zbl
[4] Filippova T.F., “Control and estimation for a class of impulsive dynamical systems”, Ural Math. J., 5:2 (2019), 21–30 | DOI | MR | Zbl
[5] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Birkhäuser, Cham, 2014, 445 pp. | DOI | MR | Zbl
[6] Patsko V.S., Fedotov A.A., “The structure of the reachable set for a Dubins car with a strictly one-sided turn”, Tr. Inst. Mat. Mekh. UrO RAN, 25:3 (2019), 171–187 (in Russian) | DOI | MR
[7] Filippov A.F., Differential equations with discontinuous righthand sides, Springer, Dordrecht, 1988, 304 pp. | DOI | MR
[8] Panasyuk A.I., Panasyuk V.I., “An equation generated by a differential inclusion”, Math. Notes, 27:3 (1980), 213–218 | DOI | MR | Zbl
[9] Ershov A.A., Ushakov A.V., Ushakov V.N., “An approach problem for a control system with a compact set in the phase space in the presence of phase constraints”, Sb. Math., 210:8 (2019), 1092–1128 | DOI | MR | Zbl
[10] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, NY, 1988, 517 pp. ; Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsial'nye igry, Original Russian text, Nauka Publ., Moscow, 1974, 456 pp. | MR | Zbl | MR
[11] Lukoyanov N.Yu., “A differential game with integral performance criterion”, Diff. Equat., 30:11 (1994), 1759–1766 | MR | Zbl
[12] Fominykh A.V., “On subdifferential and hypodifferential descent methods in a problem on constructing a program control with an integral constraint on the control”, Autom. Remote Control, 78:4 (2017), 608–617 | DOI | MR | Zbl
[13] Guseinov Kh.G., Nazlipinar A.S., “On the continuity property of $L_p$ balls and an application”, J. Math. Anal. Appl., 335:2 (2007), 1347–1359 | DOI | MR | Zbl
[14] Gusev M.I., Zykov I.V., “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Proc. Steklov Inst. Math., 300:1 (2018), 114–125 | DOI | MR
[15] Gusev M.I., “An algorithm for computing boundary points of reachable sets of control systems under integral constraints”, Ural Math. J., 3:1 (2017), 44–51 | DOI | MR | Zbl
[16] Huseyin A., Huseyin N., “Precompactness of the set of trajectories of the controllable system described by a nonlinear Volterra integral equation”, Math. Model. Anal., 17:5 (2012), 686–695 | DOI | MR | Zbl
[17] Huseyin A., Huseyin N., Guseinov Kh.G., “Approximation of the integral funnel of a nonlinear control system with limited control resources”, Minimax Theory Appl., 5:2 (2020), 327–346 | MR | Zbl
[18] Huseyin N., Huseyin A., Guseinov Kh.G., “On the robustness property of a control system described by an Urysohn type integral equation”, Tr. Inst. Mat. Mekh. UrO RAN, 27:3 (2021), 263–270 | DOI | MR
[19] Huseyin A., Huseyin N., Guseinov K.G., “Continuity of $L_p$ balls and an application to input-output systems”, Mathematical Notes, 111:1–2 (2022), 58–70 | DOI | MR | Zbl
[20] Kostousova E.K., “On polyhedral estimation of reachable sets in the “extended” space for discrete-time systems with uncertain matrices and integral constraints”, Tr. Inst. Mat. Mekh. UrO RAN, 26:1 (2020), 141–155 (in Russian) | DOI | MR
[21] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy [Theory of motion control. Linear systems], Nauka Publ., Moscow, 1968, 475 pp.
[22] Subbotina N.N., Subbotin A.I., “Alternative for the encounter-evasion differential game with constraints on the momenta of the players controls”, J. Appl. Math. Mech., 39:3 (1975), 376–385 | DOI | MR | Zbl
[23] Wheeden R.L., Zygmund A., Measure and integral. An introduction to real analysis, M. Dekker Inc., NY, 1977, 274 pp. | MR | Zbl