Construction of Discontinuous Piecewise Quadratic Value Functions in a Target Control Problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 259-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a method for the approximate solution of solvability and control synthesis problems for a nonlinear autonomous system of ordinary differential equations on a fixed time interval. The proposed method is based on the hybridization of equations and passage to equivalent problems for a piecewise linear system. Next, the value function is constructed as an approximate solution of the Hamilton–Jacobi–Bellman equation, and the comparison principle is applied. The solution is chosen from the class of piecewise quadratic functions. To improve the accuracy of the method, the value function is assumed to have discontinuities on certain sets in the state space. We propose a numerical algorithm for feedback control computation and obtain an a priori estimate for the error of reaching the target set for the original nonlinear system.
Keywords: nonlinear dynamics, control synthesis, dynamic programming, comparison principle, linearization, switched system, piecewise quadratic value function.
@article{TIMM_2022_28_3_a18,
     author = {I. A. Chistyakov and P. A. Tochilin},
     title = {Construction of {Discontinuous} {Piecewise} {Quadratic} {Value} {Functions} in a {Target} {Control} {Problem}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {259--273},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a18/}
}
TY  - JOUR
AU  - I. A. Chistyakov
AU  - P. A. Tochilin
TI  - Construction of Discontinuous Piecewise Quadratic Value Functions in a Target Control Problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 259
EP  - 273
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a18/
LA  - ru
ID  - TIMM_2022_28_3_a18
ER  - 
%0 Journal Article
%A I. A. Chistyakov
%A P. A. Tochilin
%T Construction of Discontinuous Piecewise Quadratic Value Functions in a Target Control Problem
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 259-273
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a18/
%G ru
%F TIMM_2022_28_3_a18
I. A. Chistyakov; P. A. Tochilin. Construction of Discontinuous Piecewise Quadratic Value Functions in a Target Control Problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 259-273. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a18/

[1] Kurzhanskii A.B., “Printsip sravneniya dlya uravnenii tipa Gamiltona - Yakobi v teorii upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12:1 (2006), 173–183 | Zbl

[2] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes, SCFA, 85, Birkhäuser, Basel, 2014, 445 pp. | DOI | MR

[3] Habets L.C.G.J.M., Collins P.J., van Schuppen J.H., “Reachability and control synthesis for piecewise-affine hybrid systems on simplices”, IEEE Trans. Automatic Control, 51:6 (2006), 938–948 | DOI | MR | Zbl

[4] Girard A., Martin S., “Synthesis of constrained nonlinear systems using hybridization and robust controllers on simplices”, IEEE Trans. Automatic Control, 57:4 (2012), 1046–1051 | DOI | MR | Zbl

[5] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Institut kompyuternykh issledovanii, Moskva; Izhevsk, 2003, 336 pp.

[6] Fleming W.H., Soner H.M., Controlled Markov Processes and viscosity solutions, Springer, NY, 2006, 429 pp. | DOI | MR | Zbl

[7] Chistyakov I.A., Tochilin P.A., “Priblizhennoe reshenie zadachi tselevogo upravleniya v sluchae nelineinosti po odnoi peremennoi”, Differents. uravneniya, 55:11 (2019), 1560–1571 | Zbl

[8] Chistyakov I.A., Tochilin P.A., “Primenenie kusochno-kvadratichnykh funktsii tseny dlya priblizhennogo resheniya nelineinoi zadachi tselevogo upravleniya”, Differents. uravneniya, 56:11 (2020), 1545–1554

[9] Tochilin P.A., “Piecewise affine feedback control for approximate solution of the target control problem”, IFAC-PapersOnLine, 53:2 (2020), 6127–6132 | DOI

[10] Tochilin P.A., Chistyakov I.A., “O postroenii razryvnogo kusochno-affinnogo sinteza v zadache tselevogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:3 (2021), 194–210 | DOI | MR

[11] Tarjan R., “Depth-first search and linear graph algorithms”, SIAM Journal on Computing, 1:2 (1971), 146–160 | DOI | MR

[12] Sharir M., “A strong-connectivity algorithm and its applications in data flow analysis”, Computers Mathematics with Applications, 7:1 (1981), 67–72 | DOI | MR | Zbl

[13] Nesterov Yu., Nemirovskii A., Interior-point polynomial algorithms in convex programming, SIAM studies in applied mathematics, 13, SIAM, Philadelphia, 1994, 405 pp. | DOI | MR | Zbl

[14] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[15] Reissig G., “Computing Abstractions of Nonlinear Systems”, IEEE Trans. Automatic Control, 56:11 (2011), 2583–2598 | DOI | MR | Zbl