Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 241-258
Voir la notice de l'article provenant de la source Math-Net.Ru
For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittable customer demands (CVRP-UCD), and the prize collecting traveling salesman problem (PCTSP). The presented results are united by the property that they all rely on polynomial cost-preserving reduction to appropriate instances of the asymmetric traveling salesman problem (ATSP) and on the $(22+\varepsilon)$-approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019.
Keywords:
asymmetric traveling salesman problem, constant-factor approximation algorithm, polynomial-time reduction, Steiner cycle problem, generalized traveling salesman problem, prize collecting traveling salesman problem, vehicle routing problem.
@article{TIMM_2022_28_3_a17,
author = {M. Yu. Khachay and E. D. Neznakhina and K. V. Ryzhenko},
title = {Constant-Factor {Approximation} {Algorithms} for a {Series} of {Combinatorial} {Routing} {Problems} {Based} on the {Reduction} to the {Asymmetric} {Traveling} {Salesman} {Problem}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {241--258},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a17/}
}
TY - JOUR AU - M. Yu. Khachay AU - E. D. Neznakhina AU - K. V. Ryzhenko TI - Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 241 EP - 258 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a17/ LA - ru ID - TIMM_2022_28_3_a17 ER -
%0 Journal Article %A M. Yu. Khachay %A E. D. Neznakhina %A K. V. Ryzhenko %T Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem %J Trudy Instituta matematiki i mehaniki %D 2022 %P 241-258 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a17/ %G ru %F TIMM_2022_28_3_a17
M. Yu. Khachay; E. D. Neznakhina; K. V. Ryzhenko. Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 241-258. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a17/