@article{TIMM_2022_28_3_a16,
author = {E. N. Khailov and E. V. Grigorieva and A. D. Klimenkova},
title = {Optimal combination treatment protocols for a controlled model of blood cancer},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {222--240},
year = {2022},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a16/}
}
TY - JOUR AU - E. N. Khailov AU - E. V. Grigorieva AU - A. D. Klimenkova TI - Optimal combination treatment protocols for a controlled model of blood cancer JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 222 EP - 240 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a16/ LA - ru ID - TIMM_2022_28_3_a16 ER -
%0 Journal Article %A E. N. Khailov %A E. V. Grigorieva %A A. D. Klimenkova %T Optimal combination treatment protocols for a controlled model of blood cancer %J Trudy Instituta matematiki i mehaniki %D 2022 %P 222-240 %V 28 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a16/ %G ru %F TIMM_2022_28_3_a16
E. N. Khailov; E. V. Grigorieva; A. D. Klimenkova. Optimal combination treatment protocols for a controlled model of blood cancer. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 222-240. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a16/
[1] World Health Organization [site] URL: https://www.who.int/news-room/fact-sheets/deta il/cancer
[2] Miller K.D., Siegel R.L., Lin C.C., Mariotto A.B., Kramer J.L., Rowland J.H., Stein K.D., Alteri R., Jemal A., “Cancer treatment and survivorship statistics”, A Cancer Journal for Clinicians, 66:4 (2016), 271–289 | DOI
[3] Clapp G., Levy D., “A review of mathematical models for leukemia and lymphoma”, Drug Discov. Today Dis. Models, 16 (2015), 1–6 | DOI
[4] Chulián S., Martinez-Rubio A., Rosa M., Pérez-Garcia V.M., Mathematical models of leukaemia and its treatment: a review, [e-resource], 2020, 47 pp., arXiv: 2011.05881 | MR
[5] Kuznetsov M., Clairambault J., Volpert V., “Improving cancer treatments via dynamical biophysical models”, Physics of Life Reviews, 39 (2021), 1–48 | DOI
[6] Malinzi J., Basita K.B., Padidar S., Adeola H.A., “Prospect for application of mathematical models in combination cancer treatments”, Informatics in Medicine Unlocked, 23 (2021), 100534, 15 pp. | DOI
[7] Khailov E.N., Grigorenko N.L., Grigoreva E.V., Klimenkova A.D., Upravlyaemye sistemy Lotki - Volterry v modelirovanii mediko-biologicheskikh protsessov, MAKS PRESS, M., 2021, 204 pp.
[8] Bratus A.S., Novozhilov A.S., Platonov A.P., Dinamicheskie sistemy i modeli biologii, Fizmatlit, M., 2010, 400 pp.
[9] Maltugueva N.S., Pogodaev N.I., “O suschestvovanii resheniya zadachi optimalnogo upravleniya gibridnoi sistemoi”, Izv. Irkut. gos. un-ta. Ser. Matematika, 19 (2017), 129–135 | MR | Zbl
[10] Dmitruk A.V., Koganovich A.M., “Maximum principle for optimal control problems with intermediate constraints”, Computat. Math. Model., 22:2 (2011), 180–215 | DOI | MR | Zbl
[11] Afanasev V.N., Kolmanovskii V.B., Nosov V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya, Vysshaya shkola, M., 1998, 574 pp.
[12] Bonnans F., Martinon P., Giorgi D., Grélard V., Maindrault S., Tissot O., Liu J., BOCOP 2.2.1 - user guide, [e-resource], August 8, 2019 URL: http://bocop.org