Optimal combination treatment protocols for a controlled model of blood cancer
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 222-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A combined treatment of blood cancer is considered on a given time interval. The treatment consists of two stages. At the first stage, the patient undergoes therapy that has a powerful effect on the body in order to eliminate the disease. At the second stage, therapy is aimed at maintaining the achieved positive effect. The moment of transition from the first stage of treatment to the second is not fixed and depends on the patient's condition. The implementation of such treatment is mathematically described by a two-dimensional Lotka–Volterra competition model whose variables are the concentrations of healthy and cancerous cells. The model contains two bounded control functions expressing the intensity of applied therapies. The quality of such combined treatment is assessed by minimizing an objective function that describes the dynamics of the concentrations of healthy and cancerous cells at the ends of the first and second stages of the total treatment period. For the theoretical analysis of this optimization problem, the Pontryagin maximum principle for hybrid control systems is applied. The results of numerical calculations performed in the BOCOP-2.2.1 environment are also presented and discussed in detail.
Keywords: blood cancer, two-dimensional Lotka–Volterra competition model, hybrid control system, optimal control, Pontryagin maximum principle.
@article{TIMM_2022_28_3_a16,
     author = {E. N. Khailov and E. V. Grigorieva and A. D. Klimenkova},
     title = {Optimal combination treatment protocols for a controlled model of blood cancer},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {222--240},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a16/}
}
TY  - JOUR
AU  - E. N. Khailov
AU  - E. V. Grigorieva
AU  - A. D. Klimenkova
TI  - Optimal combination treatment protocols for a controlled model of blood cancer
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 222
EP  - 240
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a16/
LA  - ru
ID  - TIMM_2022_28_3_a16
ER  - 
%0 Journal Article
%A E. N. Khailov
%A E. V. Grigorieva
%A A. D. Klimenkova
%T Optimal combination treatment protocols for a controlled model of blood cancer
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 222-240
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a16/
%G ru
%F TIMM_2022_28_3_a16
E. N. Khailov; E. V. Grigorieva; A. D. Klimenkova. Optimal combination treatment protocols for a controlled model of blood cancer. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 222-240. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a16/

[1] World Health Organization [site] URL: https://www.who.int/news-room/fact-sheets/deta il/cancer

[2] Miller K.D., Siegel R.L., Lin C.C., Mariotto A.B., Kramer J.L., Rowland J.H., Stein K.D., Alteri R., Jemal A., “Cancer treatment and survivorship statistics”, A Cancer Journal for Clinicians, 66:4 (2016), 271–289 | DOI

[3] Clapp G., Levy D., “A review of mathematical models for leukemia and lymphoma”, Drug Discov. Today Dis. Models, 16 (2015), 1–6 | DOI

[4] Chulián S., Martinez-Rubio A., Rosa M., Pérez-Garcia V.M., Mathematical models of leukaemia and its treatment: a review, [e-resource], 2020, 47 pp., arXiv: 2011.05881 | MR

[5] Kuznetsov M., Clairambault J., Volpert V., “Improving cancer treatments via dynamical biophysical models”, Physics of Life Reviews, 39 (2021), 1–48 | DOI

[6] Malinzi J., Basita K.B., Padidar S., Adeola H.A., “Prospect for application of mathematical models in combination cancer treatments”, Informatics in Medicine Unlocked, 23 (2021), 100534, 15 pp. | DOI

[7] Khailov E.N., Grigorenko N.L., Grigoreva E.V., Klimenkova A.D., Upravlyaemye sistemy Lotki - Volterry v modelirovanii mediko-biologicheskikh protsessov, MAKS PRESS, M., 2021, 204 pp.

[8] Bratus A.S., Novozhilov A.S., Platonov A.P., Dinamicheskie sistemy i modeli biologii, Fizmatlit, M., 2010, 400 pp.

[9] Maltugueva N.S., Pogodaev N.I., “O suschestvovanii resheniya zadachi optimalnogo upravleniya gibridnoi sistemoi”, Izv. Irkut. gos. un-ta. Ser. Matematika, 19 (2017), 129–135 | MR | Zbl

[10] Dmitruk A.V., Koganovich A.M., “Maximum principle for optimal control problems with intermediate constraints”, Computat. Math. Model., 22:2 (2011), 180–215 | DOI | MR | Zbl

[11] Afanasev V.N., Kolmanovskii V.B., Nosov V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya, Vysshaya shkola, M., 1998, 574 pp.

[12] Bonnans F., Martinon P., Giorgi D., Grélard V., Maindrault S., Tissot O., Liu J., BOCOP 2.2.1 - user guide, [e-resource], August 8, 2019 URL: http://bocop.org