@article{TIMM_2022_28_3_a14,
author = {V. I. Sumin},
title = {Volterra {Functional} {Equations} in the {Theory} of {Optimization} of {Distributed} {Systems.} {On} the {Problem} of {Singularity} of {Controlled} {Initial{\textendash}Boundary} {Value} {Problems}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {188--201},
year = {2022},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a14/}
}
TY - JOUR AU - V. I. Sumin TI - Volterra Functional Equations in the Theory of Optimization of Distributed Systems. On the Problem of Singularity of Controlled Initial–Boundary Value Problems JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 188 EP - 201 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a14/ LA - ru ID - TIMM_2022_28_3_a14 ER -
%0 Journal Article %A V. I. Sumin %T Volterra Functional Equations in the Theory of Optimization of Distributed Systems. On the Problem of Singularity of Controlled Initial–Boundary Value Problems %J Trudy Instituta matematiki i mehaniki %D 2022 %P 188-201 %V 28 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a14/ %G ru %F TIMM_2022_28_3_a14
V. I. Sumin. Volterra Functional Equations in the Theory of Optimization of Distributed Systems. On the Problem of Singularity of Controlled Initial–Boundary Value Problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 188-201. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a14/
[1] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 896 pp.
[2] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR
[3] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR
[4] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 368 pp.
[5] Sumin V.I., “Ob ustoichivosti suschestvovaniya globalnogo resheniya pervoi kraevoi zadachi dlya upravlyaemogo parabolicheskogo uravneniya”, Differents. uravneniya, 22:9 (1986), 1587–1595 | MR
[6] Sumin V.I., “K probleme singulyarnosti raspredelennykh upravlyaemykh sistem. III”, Vestn. NNGU. Mat. modelirovanie i optimalnoe upravlenie, 2002, no. 1(25), 164–174
[7] Sumin V.I., “Upravlyaemye volterrovy funktsionalnye uravneniya i printsip szhimayuschikh otobrazhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:1 (2019), 262–278 | DOI | MR
[8] Sumin V.I., “Volterrovy funktsionalnye uravneniya v probleme ustoichivosti suschestvovaniya globalnykh reshenii raspredelennykh upravlyaemykh sistem”, Vestn. rossiiskikh universitetov. Matematika, 25:132 (2020), 422–440 | DOI | Zbl
[9] Tikhonov A.N., “O funktsionalnykh uravneniyakh tipa Volterra i ikh primeneniyakh k nekotorym zadacham matematicheskoi fiziki”, Byull. MGU. Sek. A, 1:8 (1938), 1–25
[10] Fursikov A.V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp.
[11] Chernov A.V., “O preodolenii singulyarnosti raspredelennykh sistem upravleniya”, Mat. modelirovanie i kraevye zadachi, Tr. Tretei Vseros. nauchn. konf., v. 2, SamGTU, Samara, 2006, 171–174
[12] Barbu V., “Necessary conditions for distributed control problems governed by parabolic variational inequalities”, SIAM J. Control Optim., 19:1 (1981), 64–68 | DOI | MR
[13] Fursikov A.V., “Lagrange principle for problems of optimal control of ill posed or singular distributed systems”, J. Math. Pures Appl., 71:2 (1992), 139–195 | MR | Zbl
[14] Rota G.C., Strang G.C., “A note on the joint spectral radius”, Indag. Math., 22 (1960), 379–381 | DOI | MR
[15] Shulman V.S., Turovskii Y.V., “Joint spectral radius, operator semigroups, and a problem of W. Wojtynski”, J. Funct. Anal., 17:2 (2000), 383–441 | DOI | MR
[16] Sumin V., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, IFAC PapersOnLine, 51:32 (2018), 759–764 | DOI