On a condition for the coincidence of transform spaces for functionals in a Hilbert space
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 142-154
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper considers the following problem. Let $H$ be some reproducing kernel Hilbert space consisting of functions given on a set $\Omega\subset {\mathbb C}^n$, $n\ge1$, and let $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in\Omega_1}$ be some complete systems of functions in $H$, where $\Omega_1\subset {\mathbb C^m}$, $m\ge1$. Define 
\begin{align*}
\widetilde f(z)\stackrel{def}{=}(e_1(\cdot, z), f)_{H}\, \forall z\in \Omega_1,\quad \widetilde H=\{\widetilde f,\, f\in H\},
\\ (\widetilde f_1,\widetilde f_2)_{\widetilde H}\stackrel{def}{=}(f_2,f_1)_{H}, \,
\|\widetilde f_1\|_{\widetilde H}=\|f_1\|_{H} \quad\forall \widetilde  f_1,\widetilde f_2\in \widetilde H,
\\
\widehat f(z)\stackrel{def}{=}(e_2(\cdot, z), f)_{H}\, \forall z\in \Omega_1,\quad \widehat H=\{\widehat f,\, f\in H\},
\\ (\widehat f_1,\widehat f_2)_{\widehat H}\stackrel{def}{=}(f_2,f_1)_{H}, \,
\|\widehat f_1\|_{\widehat H}=\|f_1\|_{H} \quad\forall \widehat  f_1,\widehat f_2\in \widehat H.
\end{align*}  It is required to find a condition under which the spaces $\widehat H$ and $\widetilde H$ coincide, i.e., $\widehat H$ and $\widetilde H$ consist of the same functions and \[ \|f\|_{\widehat H}=\|f\|_{\widetilde H}  \forall f\in \widehat H=\widetilde H. \] We also study the question of conditions under which the spaces $\widehat H$ and $\widetilde H$ are equivalent. In the case when the systems of functions $\{e_j(\cdot,\xi)\}_{\xi\in\Omega_1}$, $j=1,2$, are orthosimilar decomposition systems in the space $H$ with the same measure $\mu$ given on $\Omega_1$, a criterion is established; more exactly, a condition is found that is necessary and sufficient for the coincidence (equivalence) of the spaces $\widehat H$ and $\widetilde H$. Note that, in the case of an arbitrary space $H$ and arbitrary systems of functions $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ that are complete in $H$, the found condition is always necessary; i.e., if the spaces $\widehat H$ and $\widetilde H$ coincide (are equivalent), then this condition is fulfilled. In the case when the systems of functions $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ are orthosimilar decomposition systems in the space $H$ with different measures $\mu_1$ and $\mu_2$, respectively, given on $\Omega_1$, we construct specific examples of spaces $H$ and systems of functions $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ complete in $H$ and such that the specified condition is met, but the spaces $\widehat H$ and $\widetilde H$ are not the same (not equivalent).
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
orthosimilar decomposition systems, reproducing kernel Hilbert space, Riesz basis, problem of describing the dual space.
                    
                  
                
                
                @article{TIMM_2022_28_3_a10,
     author = {V. V. Napalkov (Jr.) and A. A. Nuyatov},
     title = {On a condition for the coincidence of transform spaces for functionals in a {Hilbert} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {142--154},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a10/}
}
                      
                      
                    TY - JOUR AU - V. V. Napalkov (Jr.) AU - A. A. Nuyatov TI - On a condition for the coincidence of transform spaces for functionals in a Hilbert space JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 142 EP - 154 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a10/ LA - ru ID - TIMM_2022_28_3_a10 ER -
%0 Journal Article %A V. V. Napalkov (Jr.) %A A. A. Nuyatov %T On a condition for the coincidence of transform spaces for functionals in a Hilbert space %J Trudy Instituta matematiki i mehaniki %D 2022 %P 142-154 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a10/ %G ru %F TIMM_2022_28_3_a10
V. V. Napalkov (Jr.); A. A. Nuyatov. On a condition for the coincidence of transform spaces for functionals in a Hilbert space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 142-154. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a10/
