Projection Method for Infinite-Horizon Economic Growth Problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 17-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A projection method is proposed for infinite-horizon economic growth problems. Exponentially discounted orthogonal Laguerre polynomials are used as the basis functions for the parameterization of the solution. The convergence of the method is studied numerically for integrable cases in the Ramsey model. It is shown that the best convergence of the method is achieved if the parameter in the exponent is chosen to be equal to the negative eigenvalue of the linearization matrix of the Hamiltonian system around a steady state at infinity. In the considered examples, the projection method leads to a system of equations with a small number of unknowns, in contrast to the methods using finite difference approximation.
Keywords: Galerkin method, infinite-horizon control problem, transversality conditions, Ramsey model, CRRA utility function
Mots-clés : Gauss–Laguerre quadrature, Bernoulli transformation.
@article{TIMM_2022_28_3_a1,
     author = {B. M. Arystanbekov and N. B. Melnikov},
     title = {Projection {Method} for {Infinite-Horizon} {Economic} {Growth} {Problems}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {17--29},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a1/}
}
TY  - JOUR
AU  - B. M. Arystanbekov
AU  - N. B. Melnikov
TI  - Projection Method for Infinite-Horizon Economic Growth Problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 17
EP  - 29
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a1/
LA  - ru
ID  - TIMM_2022_28_3_a1
ER  - 
%0 Journal Article
%A B. M. Arystanbekov
%A N. B. Melnikov
%T Projection Method for Infinite-Horizon Economic Growth Problems
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 17-29
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a1/
%G ru
%F TIMM_2022_28_3_a1
B. M. Arystanbekov; N. B. Melnikov. Projection Method for Infinite-Horizon Economic Growth Problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 17-29. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a1/

[1] Boyd J.P., Chebyshev and Fourier spectral methods, 2nd edn., Dover Publ., NY, 2001, 688 pp. | MR | Zbl

[2] Press W.H., Teukolsky S.A., Vetterling T., Flannery B.P., Numerical recipes, 3rd edn., Cambridge Univ. Press, NY, 2007, 1256 pp. | MR | Zbl

[3] Judd K.L., “Projection methods for solving aggregate growth models”, J. Econ. Theory, 58:2 (1992), 410–452 | DOI | MR | Zbl

[4] Miftakhova A., Schmedders K., Schumacher M., “Computing economic equilibria using projection methods”, Annu. Rev. Econ., 12 (2020), 317–353 | DOI

[5] Judd K.L., “The parametric path method: an alternative to Fair-Taylor and L-B-J for solving perfect foresight models”, J. Econ. Dyn. Control, 26:9–10 (2002), 1557–1583 | DOI | MR | Zbl

[6] Blanchard O.J., Fischer S., Lectures on macroeconomics, MIT Press, Cambridge, MA, 1993, 664 pp.

[7] Barro J.R., Sala-i-Martin X., Economic growth, 2nd edn., MIT Press, Cambridge, MA, 2003, 672 pp.

[8] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Trudy MIAN, 257 (2007), 3–271

[9] Smith W.T., “A closed form solution to the Ramsey model”, J. Macroecon., 6:1 (2006), 1–27 | DOI

[10] Lahiri S., Eckaus R.S., Babiker M., “The Effects of changing consumption patterns on the costs of emission restrictions”, MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA, 2000, 64, 14 pp.

[11] Melnikov N.B., O'Neill B.C., Dalton M.G., “Accounting for household heterogeneity in general equilibrium economic growth models”, Energy Econ., 34:5 (2012), 1475–1483 | DOI

[12] Melnikov N.B., Gruzdev A.P., Dalton M.G., Weitzel M., O'Neill B.C., “Parallel extended path method for solving perfect foresight models”, Comput. Econ., 58:2 (2021), 517–534 | DOI

[13] Boháček R., Kejak M., Projection methods for economies with heterogeneous agents: CERGE-EI Working Papers, WP258, Working paper series, CERGE-EI Publ., Prague, 2005, 32 pp.

[14] Kelley C.T., Iterative methods for linear and nonlinear equations, SIAM, Philadelphia, 1995, 179 pp. | DOI | MR | Zbl

[15] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[16] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publ., NY, 1972, 1076 pp. | MR

[17] Long J.B., Plosser C.I., “Real business cycles”, J. Political Econ., 91:1 (1983), 39–69 | DOI

[18] Stokey N., Lucas R., Recursive methods in economic dynamics, Harvard University Press, Cambridge, MA, 1989, 608 pp. | MR | Zbl

[19] Chang F., “The inverse optimal problem: A dynamic programming approach”, Econometrica, 56:1 (1988), 147–172 | DOI | MR | Zbl

[20] Arystanbekov B.M., Melnikov N.B., “Generalized Galerkin method for an infinite time-horizon economic growth problem”, Teoriya optimalnogo upravleniya i prilozheniya (OCTA 2022), materialy Mezhdunar. konf. (Ekaterinburg, 27 iyunya - 1 iyulya 2022 g.), eds. red. A. M. Tarasev, T. F. Filippova, Ekaterinburg, 2022, 281–285

[21] Krasovskii A.A., Lebedev P.D., Tarasev A.M., “Zamena Bernulli v modeli Remzi: optimalnye traektorii pri ogranicheniyakh na upravlenie”, Zhurn. vychisl. matematiki i mat. fiziki, 57:5 (2017), 768–782 | Zbl

[22] Oberman A.M., “Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems”, SIAM J. Numerical Analysis, 44:2 (2006), 879–895 | DOI | MR | Zbl

[23] Achdou Y., Han J., Lasry J.-M., Lions P.-L., Moll B., “Income and wealth distribution in macroeconomics: A continuous-time approach”, Rev. Econ. Stud., 89:1 (2022), 45–86 | DOI | MR | Zbl

[24] Smith W.T., “Inspecting the mechanism exactly: A closed-form solution to a stochastic growth model”, J. Macroecon., 7:1 (2007), 1–31 | DOI