Solution of a Linear–Quadratic Problem on a Set of Piecewise Constant Controls with Parameterization of the Functional
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear–quadratic problem of optimal control with arbitrary matrices in the cost functional and a multidimensional control constrained at every time is considered. The set of admissible controls consists of piecewise constant vector functions on a nonuniform discretization grid. The optimal control problem is reduced to a finite-dimensional form with the use of characteristic functions with grid structure and block matrices together with the corresponding operation of scalar product. Positive parameters of the quadratic forms provide the possibility of regularization of the cost functional. The choice of these parameters is aimed at the regularization of the functional in the sense of its reduction to a convex or concave structure at the level of a finite-dimensional model. The conditions for these parameters are of spectral nature; they are inequalities with respect to extreme eigenvalues of the block matrices that form the objective function. The corresponding convex or concave optimization problems allow to solve the problem in a finite number of iterations. A nongradient condition of global optimality is obtained for the original problem of optimal control based on known estimates for the increment of the functional. A nonlocal improvement procedure in terms of the Pontryagin function is proposed.
Keywords: linear–quadratic problem, multidimensional discrete control, functional with parameters, reduction to a finite-dimensional model, regularization of the problem.
@article{TIMM_2022_28_3_a0,
     author = {A. V. Arguchintsev and V. A. Srochko},
     title = {Solution of a {Linear{\textendash}Quadratic} {Problem} on a {Set} of {Piecewise} {Constant} {Controls} with {Parameterization} of the {Functional}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {5--16},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a0/}
}
TY  - JOUR
AU  - A. V. Arguchintsev
AU  - V. A. Srochko
TI  - Solution of a Linear–Quadratic Problem on a Set of Piecewise Constant Controls with Parameterization of the Functional
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 5
EP  - 16
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a0/
LA  - ru
ID  - TIMM_2022_28_3_a0
ER  - 
%0 Journal Article
%A A. V. Arguchintsev
%A V. A. Srochko
%T Solution of a Linear–Quadratic Problem on a Set of Piecewise Constant Controls with Parameterization of the Functional
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 5-16
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a0/
%G ru
%F TIMM_2022_28_3_a0
A. V. Arguchintsev; V. A. Srochko. Solution of a Linear–Quadratic Problem on a Set of Piecewise Constant Controls with Parameterization of the Functional. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 5-16. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a0/

[1] Rao A.V., “A survey of numerical methods for optimal control”, Adv. Astron. Sci., 135 (2009), 1–32 | Zbl

[2] Golfetto W.A., da Silva Fernandes S., “A review of gradient algorithms for numerical computation of optimal trajectories”, J. Aerosp. Technol. Manag., 4 (2012), 131–143 | DOI

[3] Srochko V.A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000, 160 pp.

[4] Gabasov R., Kirillova F.M., Pavlenok N.S., “Postroenie programmnogo i pozitsionnogo reshenii lineino-kvadratichnoi zadachi optimalnogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 48:10 (2008), 1748–1779 | DOI | MR | Zbl

[5] Kostyukova O.I, Fedortsova N.M., “Issledovanie svoistv reshenii lineino-kvadratichnykh parametricheskikh zadach optimalnogo upravleniya”, Informatsionno-upravlyayuschie sistemy, 2012, no. 4, 43–51

[6] Grad J.R, Morris K.A., “Solving the linear quadratic optimal control problem for infinite-dimensional systems”, Computers Math. Applic., 32:9 (1996), 99–119 | DOI | MR | Zbl

[7] Arguchintsev A.V., Srochko V.A., “Protsedura regulyarizatsii bilineinykh zadach optimalnogo upravleniya na osnove konechnomernoi modeli”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 18:1 (2022), 180–188 | DOI

[8] Strekalovskii A.S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003, 356 pp.

[9] Strekalovsky A.S., “On global maximum of a convex terminal functional in optimal control problems”, J. Glob. Optim., 7 (1995), 75–91 | DOI | MR | Zbl

[10] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR

[11] Izmailov A.F., Solodov M.V., Chislennye metody optimizatsii, Fizmatlit, M., 2005, 304 pp. | MR

[12] Pshenichnyi B.N., Danilin Yu.M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975, 319 pp. | MR

[13] Konnov I.V., Nelineinaya optimizatsiya i variatsionnye neravenstva, Kazan. un-t, Kazan, 2013, 508 pp.

[14] Srochko V.A., Aksenyushkina E.V., Antonik V.G., “Reshenie lineino-kvadratichnoi zadachi optimalnogo upravleniya na osnove konechnomernykh modelei”, Izv. Irkutsk. gos. un-ta. Ser. Matematika, 37 (2021), 3–16 | DOI | MR | Zbl

[15] Parlett B., Simmetrichnaya problema sobstvennykh znachenii. Chislennye metody, Mir, M., 1983, 384 pp.

[16] Subbotina N.N., Krupennikov E.A., “Slabye so zvezdoi approksimatsii resheniya zadachi dinamicheskoi rekonstruktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:2 (2021), 208–220 | DOI | MR