Structural and algorithmic properties of maximal dissociating sets in graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 114-142
Voir la notice de l'article provenant de la source Math-Net.Ru
A subset of the vertex set of a graph is called dissociating if the degrees of the vertices of the subgraph generated by this subset do not exceed $1$. A dissociating set is maximal if it is not contained in any dissociating set with a greater number of vertices. Estimates for the greatest (smallest) number of vertices in a maximal dissociating set of a graph are proposed. It is proved that the problem of finding a maximal dissociating set of smallest cardinality is NP-hard for quasichordal bipartite graphs. In addition, it is proved that the problem of finding a maximal dissociating set of smallest cardinality is NP-hard for chordal bipartite graphs, bipartite graphs with the greatest degree of a vertex equal to 3, planar graphs with large girth, and for classes of graphs characterized by finite lists of forbidden generated biconnected subgraphs. A linear algorithm for solving the latter problem in the class of trees is proposed.
Keywords:
maximal dissociating set of a graph, problem of finding a maximal generated subgraph with maximum degree of a vertex at most 1, perfect elimination bipartite graph, NP-completeness, hereditary graph classes, trees.
Mots-clés : maximal dissociation set
Mots-clés : maximal dissociation set
@article{TIMM_2022_28_2_a9,
author = {O. I. Duginov and B. M. Kuskova and D. S. Malyshev and N. A. Shur},
title = {Structural and algorithmic properties of maximal dissociating sets in graphs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {114--142},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a9/}
}
TY - JOUR AU - O. I. Duginov AU - B. M. Kuskova AU - D. S. Malyshev AU - N. A. Shur TI - Structural and algorithmic properties of maximal dissociating sets in graphs JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 114 EP - 142 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a9/ LA - ru ID - TIMM_2022_28_2_a9 ER -
%0 Journal Article %A O. I. Duginov %A B. M. Kuskova %A D. S. Malyshev %A N. A. Shur %T Structural and algorithmic properties of maximal dissociating sets in graphs %J Trudy Instituta matematiki i mehaniki %D 2022 %P 114-142 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a9/ %G ru %F TIMM_2022_28_2_a9
O. I. Duginov; B. M. Kuskova; D. S. Malyshev; N. A. Shur. Structural and algorithmic properties of maximal dissociating sets in graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 114-142. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a9/