$\bar\omega$-Satellites of $\bar\omega$-fibered formations of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 106-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Only finite groups are considered. The notion of $\omega$-local formation of groups, where $\omega$ is a nonempty set of primes, is a well-known generalization of the notion of local formation. For an arbitrary partition $\sigma$ of the set of all primes, A. N. Skiba developed the $\sigma$-theory of finite groups and applied its methods for constructing $\sigma$-local formations. The concept of $\omega$-fiberedness introduced by V. A. Vedernikov for classes of groups made it possible to construct an infinite series of $\omega$-fibered formations, while $\omega$-local formations formed one of the types of this series. In this paper, we study $\bar\omega$‐fibered formations of groups, where $\bar\omega$ is an arbitrary partition of the set $\omega$, constructed on the basis of Skiba's $\sigma$-approach applied to $\omega$-fibered formations. Consider functions $f\colon{\bar{\omega}} \cup \{\bar{\omega}'\}\rightarrow \{$formations of groups$\}$ and $\gamma\colon\bar{\omega} \rightarrow \{$nonempty Fitting formations of groups$\}$, where $f(\bar{\omega}')\not=\varnothing$ and the class of groups $\gamma(\omega_{i})$ contains all ${\omega_{i}}'$-groups for any $\omega_{i} \in \bar{\omega}$. A formation $\frak F = (G \in \frak G \vert G/O_{\omega}(G) \in f(\bar{\omega}')$ and $G/G_{\gamma (\omega_{i})} \in f (\omega_{i})$ for any $\omega_{i} \in \bar{\omega} \cap \pi (G))$ is called an $\bar{\omega}$-fibered formation with direction $\gamma$ and $\bar{\omega}$-satellite $f$. In this paper we study inner $\bar\omega$-satellites of $\bar\omega$-fibered formations, i.e., $\bar\omega$-satellites whose values are contained in the considered formation. The following problems are solved: the existence of a canonical $\bar\omega$-satellite of an $\bar\omega$-fibered formation is proved, and the structure of a maximal inner $\bar\omega$-satellite of an $\bar\omega$-fibered formation is described.
Keywords: finite group, class of groups, $\bar\omega$-fibered formation, direction of an $\bar\omega$-fibered formation, $\bar\omega$-satellite of an $\bar\omega$-fibered formation.
Mots-clés : formation
@article{TIMM_2022_28_2_a8,
     author = {A. A. Gorepekina and M. M. Sorokina},
     title = {$\bar\omega${-Satellites} of $\bar\omega$-fibered formations of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {106--113},
     year = {2022},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a8/}
}
TY  - JOUR
AU  - A. A. Gorepekina
AU  - M. M. Sorokina
TI  - $\bar\omega$-Satellites of $\bar\omega$-fibered formations of finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 106
EP  - 113
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a8/
LA  - ru
ID  - TIMM_2022_28_2_a8
ER  - 
%0 Journal Article
%A A. A. Gorepekina
%A M. M. Sorokina
%T $\bar\omega$-Satellites of $\bar\omega$-fibered formations of finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 106-113
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a8/
%G ru
%F TIMM_2022_28_2_a8
A. A. Gorepekina; M. M. Sorokina. $\bar\omega$-Satellites of $\bar\omega$-fibered formations of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 106-113. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a8/

[1] Vedernikov V.A., “O novykh tipakh $\omega$-veernykh formatsii konechnykh grupp”, Ukrainskii matematichnyi kongress, Sektsiya 1 (Kiiv, 2002), Pratsi, 2001, 36–45

[2] Vedernikov V.A., Sorokina M.M., “$\omega$-Veernye formatsii i klassy Fittinga konechnykh grupp”, Mat. zametki, 71:1 (2002), 43–60 | MR | Zbl

[3] Vorobev N.N., Algebra klassov konechnykh grupp, VGU im. P.M. Masherova, Vitebsk, 2012, 322 pp.

[4] Skiba A.N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997, 240 pp. | MR

[5] Skiba A.N., Shemetkov L.A., “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Mat. tr., 2:2 (1999), 114–147 | MR | Zbl

[6] Sorokina M.M., Gorepekina A.A., “$\omega$-Veernye formatsii konechnykh grupp”, Chebyshevskii sb., 22:3 (2021), 232–244 | DOI | MR | Zbl

[7] Chunikhin S.A., Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964, 158 pp. | MR

[8] Shemetkov L.A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[9] Shemetkov L.A., “O proizvedenii formatsii”, Dokl. AN BSSR, 28:2 (1984), 101–103 | MR | Zbl

[10] Shemetkov L.A., Skiba A.N., Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp. | MR

[11] Carter R., Hawkes T., “The $\frak F$-normalizers of a finite soluble group”, J. Algebra, 5:2 (1967), 175–202 | DOI | MR | Zbl

[12] Doerk K., Nawkes T., Finite soluble groups, Walter de Gruyter, Berlin; NY, 1992, 891 pp. | MR

[13] Gaschütz W., “Zur Theorie der endlichen auflösbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | DOI | Zbl

[14] Schmid P., “Formationen und Automorphismengruppen”, J. London Math. Soc., 7:1 (1973), 83–94 | DOI | MR | Zbl

[15] Skiba A.N., “On $\sigma$-properties of finite groups I”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4 (21), 89–96 | Zbl

[16] Skiba A.N., “On $\sigma$-properties of finite groups II”, Problemy fiziki, matematiki i tekhniki, 2015, no. 3 (24), 70–83 | Zbl

[17] Skiba A.N., “On $\sigma$-properties of finite groups III”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1 (26), 52–62 | Zbl

[18] Skiba A.N., “On one generalization of the local formations”, Problemy fiziki, matematiki i tekhniki, 2018, no. 1 (34), 79–82 | MR | Zbl