On Kolmogorov's inequality for the first and second derivatives on the axis and on the period
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 84-95
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the inequality $\|y'\|_{L_q(G)}\le K(r,p, G) \|y\|_{L_r(G)}^{1/2}\|y'' \|_{L_p(G)}^{1/2}$ on the real line $G=\mathbb{R}$ and on the period $\mathbb{T}$ for $q\in [1,\infty)$, $r\in (0, \infty]$, $p\in[1, \infty ]$, and $1/r+1/p=2/q$. We prove that the exact constant $K(r,p,\mathbb{R})$ is equal to the exact constant $K_1$ in the inequality $\|u'\|_{L_q[0,1]}\le K_1 \|u\|_{ L_r[0,1]}^{1/2} \|u''\|_{L_p[0,1]}^{1/2}$ over the set of convex functions $u(x)$, $x\in [0,1]$, having an absolutely continuous derivative and satisfying the condition $u'(0)=u(1)=0$. As a consequence of this statement, the equality $K(r,p,\mathbb{R})=K(r,p,\mathbb{T})$ established in 2003 by V. F. Babenko, V. A. Kofanov, and S. A. Pichugov for $r\ge 1$, is extended to $r\ge 1/2$. In addition, we give a new proof of the equality $K(r,1,\mathbb{R})=(r+1)^{1/(2(r+1))}$ for $p=1$, $r\in [1,\infty)$, and $q=2r/(r+1)$, which was established by V. V. Arestov and V. I. Berdyshev in 1975.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Kolmogorov's inequality, inequalities for norms of functions and their derivatives, real axis, period.
Mots-clés : exact constants
                    
                  
                
                
                Mots-clés : exact constants
@article{TIMM_2022_28_2_a6,
     author = {P. Yu. Glazyrina and N. S. Payuchenko},
     title = {On {Kolmogorov's} inequality for the first and second derivatives on the axis and on the period},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {84--95},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a6/}
}
                      
                      
                    TY - JOUR AU - P. Yu. Glazyrina AU - N. S. Payuchenko TI - On Kolmogorov's inequality for the first and second derivatives on the axis and on the period JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 84 EP - 95 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a6/ LA - ru ID - TIMM_2022_28_2_a6 ER -
%0 Journal Article %A P. Yu. Glazyrina %A N. S. Payuchenko %T On Kolmogorov's inequality for the first and second derivatives on the axis and on the period %J Trudy Instituta matematiki i mehaniki %D 2022 %P 84-95 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a6/ %G ru %F TIMM_2022_28_2_a6
P. Yu. Glazyrina; N. S. Payuchenko. On Kolmogorov's inequality for the first and second derivatives on the axis and on the period. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 84-95. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a6/
